Тема 12. Исследование функций с помощью производной

12.03 Поиск точек экстремума у произведения

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела исследование функций с помощью производной
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#310

Найдите точку локального максимума функции

                 √-
y = (x + 1) ⋅ e− x+ 2 + e2   .

Показать ответ и решение

1)          √ -               √ -            √-
y′ = e−x+  2 − (x + 1) ⋅ e−x+ 2 = − x ⋅ e−x+ 2   .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна 0  или не существует):

      −x+√2-
− x ⋅ e     =  0     ⇔      x =  0
(так как et > 0  при любом t  ). Для того, чтобы найти точки локального максимума/минимума функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства y′ :
 
PIC
 
3) Эскиз графика y  :
 
PIC
 
Таким образом, x =  0  – точка локального максимума функции y  .

Ответ: 0

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!