Тема 15. Решение неравенств

15.05 Логарифмические неравенства с числовым основанием

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела решение неравенств
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#493

Решите неравенство

     2
log2 x ≥ 1+ log2x.
Показать ответ и решение

Найдем ОДЗ:

{
  x2 > 0   ⇔   x >0
  x> 0

При x> 0  исходное неравенство равносильно неравенствам

log2x2 ≥ log22+ log2x  ⇔   log2x2 ≥ log22x
         2
        x ≥ 2x  ⇔   x(x− 2)≥ 0

По методу интервалов имеем:

PIC

То есть получаем

x ∈(− ∞;0]∪[2;+∞ )

С учетом x> 0  получаем решение исходного неравенства

x ∈[2;+∞ )
Ответ:

 [2;+ ∞ )

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!