Раскрываем скобочки, приводим к общему знаменателю
Ошибка.
Попробуйте повторить позже
Докажите, что если действительные числа , , удовлетворяют условию
то сумма каких-то двух из них равна нулю.
Первое решение.
Приведем левую дробь к общему знаменателю:
Теперь по правилу пропорции имеем равенство:
Раскрываем в левой части скобки, получаем:
В левой и правой части взаимно уничтожится, тогду получится уравнение:
Заметим, что левая часть равна Тогда получаем равенство
Из которого напрямую следует, что сумма каких-то двух из наших чисел равна нулю.
Второе решение.
Рассмотрим многочлен, корнями которого являются данные числа
Пусть при раскрытии скобок мы получаем
Тогда по теореме Виета
Из условия после приведения к общему знаменателю получаем
то есть
Тогда можно представить в виде
Так как мы знаем про наличие трёх корней то и где
Не умаляя общности, В итоге поэтому требуемое верно.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!