Условия про НОД и НОК
Ошибка.
Попробуйте повторить позже
В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре — наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на ребрах?
Давайте докажем, что если числа и различны, то НОД. Пусть , тогда НОД, а 2НОД (так как делится на НОД, но равно быть не может, так как числа не равны и большее число, значит, 2НОД). Получили, что 3НОД. Давайте для каждого ребра запишем полученную оценку и сложим все неравенства, каждая вершина используется в трех неравенствах, поэтому сумма всех НОДов меньше либо равна суммы всех чисел. Предположим, что эти суммы равны, тогда равенство достигается в каждом неравенстве, выше. То есть равенство возможно только при или (для каждого ребра).
Не теряя общности пусть , но тогда: либо , тогда нашлись два равных числа, либо , но также или , то
есть в любом случае найдутся хотя бы два равных числа, противоречие, значит, равенства быть не могло. Таким образом, сумма всех НОДов
меньше суммы всех чисел.
Нет
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!