Корни многочленов
Ошибка.
Попробуйте повторить позже
Дан многочлен степени с целыми коэффициентами, имеющий различных целых корней. Докажите, что многочлен имеет различных действительных корней.
Источники:
Подсказка 1
Многочлен степени n не может иметь более n корней. Значит, что если многочлен P(x) + 3 имеет не n различных корней, то их у него меньше. Подумаем, а как у нас могли "пропасть" корни при увеличении P(x) на 3?
Подсказка 2
Рассмотрим график P(x), тогда, если при сдвиге графика на 3 вверх, корней стало меньше, то в каких-то точках локального экстремума P(x) значение P(x) было по модулю меньше трёх. Как можно поработать с точками локальных экстремумов, если мы не знаем их точное расположение?
Подсказка 3
Точки экстремумов находятся на промежутках между корнями! Используя подсказку 2, попробуем найти модуль значения P(x) в точках экстремума. В каком виде можно представить P(x), чтобы было удобнее считать модуль, и в каких точках мы будем его считать?
Подсказка 4
Попробуйте представить многочлен в виде a(x-a_1)(x-a_2)...(x-a_n). Хотим доказать, что в конкретных точках значение P(x) по модулю было больше 3. А в каких точках будем искать?
Подсказка 5
В точках x_i = a_i + 0.5. Т.к. мы хотим доказать, что |P(x_i)| > 3, то достаточно лишь для некоторых скобок доказать это, а остальные лишь увеличат |P(x_i)|.
Пронумеруем корни многочлена в порядке возрастания Тогда многочлен можно представить в виде
Покажем, что значение многочлена в любой точке локального экстремума по модулю строго больше (тогда при сдвиге графика многочлена на единицы вверх или вниз количество его точек пересечения с осью абсцисс не изменится). Точки локального экстремума находятся на промежутках Вычислим значения в точках Так как корней не меньше шести, то
В произведении мы оставляем шесть наименьших по модулю множителей, остальные (есть при ещё больше.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!