Тема 22. Расчётная задача

22.02 Закон Джоуля-Ленца. КПД

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела расчётная задача
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76478

К источнику постоянного тока подсоединили две лампы (см. рисунок), имеющие одинаковые электрические сопротивления. Чему равна мощность электрического тока, потребляемая каждой лампой, если показания идеального амперметра и идеального вольтметра равны, соответственно, 3 А и 6 В?

PIC

Источники: Банк ФИПИ | Проект демоверсии 2025

Показать ответ и решение

Напряжение на лампочках равны показанию вольтметр U  (так как они соединены параллельно). Пусть сопротивление лампочек равно R  , силы тока через лампочки равны I1  и I2  соответственно (см. рисунок)

PIC

Силы тока через лампочки можно найти из закона Ома:

I1 = U  I2 = U,
    R       R

следовательно, I1 =I2  . Также по закону сохранения заряда сила точка через амперметр равна I = I1+ I2 = 2I1  . Мощности на лампочках находятся по формуле:

                          6В ⋅3 А
P1 = P2 = UI1 = UI2 = UI∕2=-2---= 9 Вт
Ответ:
Критерии оценки

Критерии оценивания выполнения задачи

Баллы

Представлено полное правильное решение, включающее следующие

3

элементы:

1) верно записано краткое условие задачи;

2) записаны уравнения и формулы, применение которых

необходимо и достаточно для решения задачи выбранным

спосбом (в данном решении: формула мощности, закон Ома(если требуется), сказано, как делится ток через лампы)

Правильно записаны необходимые формулы, проведены

2

вычисления и получен ответ (верный или неверный), но допущена

ошибка в записи краткого условия или переводе единиц в СИ

ИЛИ

Представлено правильное решение только в общем виде, без каких-

либо числовых расчётов

ИЛИ

Записаны уравнения и формулы, применение которых необходимо

и достаточно для решения задачи выбранным способом, но

в математических преобразованиях или вычислениях допущена

ошибка

Записано и использовано не менее половины исходных формул,

1

необходимых для решения задачи

ИЛИ

Записаны все исходные формулы, но в одной из них допущена

ошибка

Все случаи решения, которые не соответствуют вышеуказанным

0

критериям выставления оценок в 1, 2, 3 балла

Максимальный балл

3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!