Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68079

На ребре AC  основания треугольной пирамиды ABCD  расположена точка M  так, что AM :MC = 1:2  . Через середину ребра BC  основания пирамиды проведена плоскость P  , проходящая через точку M  и параллельная боковому ребру CD  . В каком отношении плоскость P  делит объем пирамиды?

Источники: Росатом-2023, 11.6, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Давайте для начала построим сечение плоскостью P нашей пирамиды.

Подсказка 2

Пользуясь параллельностью, мы сможем из подобия найти, в каком отношении плоскость P делит рёбра пирамиды, а значит мы сможем найти и...

Подсказка 3

Как относятся высоты маленьких пирамидок и высотам из точек A и D пирамиды ABCD.

Подсказка 4

Нам достаточно найти, какую часть объёма всей пирамиды ABCD составляет объём многогранника, лежащего со стороны вершины A. Чтобы найти его объём, можно...

Подсказка 5

Разбить его на две пирамидки. А объём каждой из них мы сможем выразить через объём всей пирамиды ABCD, потому что знаем отношения высот и отношения площадей оснований.

Показать ответ и решение

Построим сечение. Поскольку секущая плоскость параллельна ребру CD  , она пересечет плоскость ACD  по прямой MP  , параллельной CD  , а плоскость BCD  — по прямой NQ  , также параллельной CD  . Соединим точки P  и Q  , лежащие в одной плоскости, и точки    M  и N  , лежащие в одной плоскости, получим MP QN  — искомое сечение.

PIC

Пусть V  — объем пирамиды, V1  — сумма объемов пирамид PABNM  и PQBN  и V2 = V − V1  .

Из подобия пар треугольников ACD  и AMP  и из условия задачи получим, что

AM = x,MC = 2x,AP = y,P D =2y

Отсюда следует, что

     y-      1
HP = 3y ⋅HD = 3HD,

где HP  — высота, опущенная из вершины P  пирамиды PABNM  , HD  — высота, опушенная из вершины D  пирамиды ABCD  .

А также значит, что площадь основания пирамиды P ABNM  равна:

                            2x  u        2
SABNM  =SABC − SMNC = SABC − 3x ⋅ 2u-⋅SABC = 3SABC

Тем самым:

VPABNM = 1HP ⋅SABNM = 1 ⋅ 1⋅HD ⋅ 2SABC = 2V
         3            3  3     3       9

Аналогично из подобия пар треугольников BCD  и BNQ  и из условия задачи получим, что

CN =NB  =u,BQ = QD = z

Отсюда следует, что

  ′  2y      2
HP = 3y ⋅HA = 3HA,

где H ′P  — высота, опущенная из вершины P  пирамиды PQBN  , HA  — высота, опущенная из вершины A  пирамиды ABCD  .

А также значит, что площадь основания пирамиды P QBN  равна:

SBNQ = u-⋅ z-⋅SBCD = 1SBCD
       2u  2z        4

Тем самым:

        1 ′        1  2    1       1
VPQBN = 3HP ⋅SQBN =3 ⋅3HA ⋅4SDBC = 6V

Теперь можно записать, что

                     2   1    7-
V1 = VPABNM + VPQBN = 9V + 6V = 18V

              7
V1= --V1--= --18V--= -7
V2  V − V1  V − 7V   11
                18
Ответ:

-7
11

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!