Стереометрия на устном туре Турнира Городов
Ошибка.
Попробуйте повторить позже
Дана треугольная пирамида , основание которой — равносторонний треугольник , а все плоские углы при вершине равны . При каком наименьшем можно утверждать, что эта пирамида правильная?
Источники:
Подсказка 1
Эта задача на оценку + пример. Давайте попробуем сначала привести пример для угла, который, как нам кажется, подходит. А потом уже докажем, что для меньшего угла условие задачи не выполняется. Подумайте какой хороший угол нам подойдёт? Слова про правильные фигуры на это всячески намекают.
Подсказка 2
Верно, докажем, что при плоском угле 60 градусов наша пирамида окажется правильной. Нужно только понять, что если в треугольнике есть угол 60 градусов, то сторона напротив него средняя по величине между другими. Тогда предположив, что какое-то боковое ребро не равно ребру из основания, сможем получить противоречие и получить доказательство. Что же будет, если плоские углы будут меньше 60? Попробуйте построить пример неправильной пирамиды с таким углом, учитывая условия задачи и соотношения сторон по их размерам.
Подсказка 3
Давайте, рассмотрим равнобедренный треугольник SAB, в котором SA=SB и ∠S = α(α<60). Тогда сторона AB в нём наименьшая, и мы сможем его отложить на боковых сторонах. Осталось только понять, что отложив на рёбрах трёхгранного угла нужные отрезки(два из которых SA и SB) с плоскими углами меньше 60, мы получим неправильную пирамиду, то есть контрпример.
Докажем, что при пирамида правильная. Пусть стороны треугольника равны 1. Заметим, что в любом треугольнике с углом против этого угла лежит средняя по длине сторона (причём если она строго меньше одной из сторон, то строго больше другой). Пусть одно из боковых рёбер пирамиды не равно 1: например, . Тогда в гранях и рёбра и будут меньше 1, и значит, в грани ребро — не средняя сторона, противоречие.
Покажем теперь, как построить неправильную пирамиду с плоскими углами при вершине .
Рассмотрим треугольник c и . Так как , на стороне существует такая точка , что . Теперь возьмем трёхгранный угол, у которого все плоские углы равны , и отложим на его ребрах отрезки , , . Пирамида — искомая.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!