Метод спуска, индукция и последовательное конструирование
Ошибка.
Попробуйте повторить позже
Докажите, что для всех натуральных число, записываемое единицами, делится на
Подсказка 1
Если не получилось явно понять, откуда берётся делимость, имеет смысл попробовать доказать утверждение индукцией по n. База очевидна, осталось придумать, как будем делать переход.
Подсказка 2
Нужно понять, как число из 3ⁿ⁺¹ единиц выразить через число из 3ⁿ единиц. Действительно, первое делится на второе, что можем сказать про частное?
Подсказка 3
И правда, мы понимаем, как выглядит частное, оно состоит из трёх единиц и нулей между ними. Такое число делится на три, а значит, с шагом индукции степень тройки, делящая число, растёт, что и требуется.
Докажем утверждение индукцией по
База индукции: при утверждение верно, ведь делится на
Предположение индукции: пусть для число, записываемое единицами, делится на
Переход: докажем утверждение для Заметим, что число из единиц можно разделить на число из единиц, причём в частном будет число в записи которого ровно три единицы, а остальные цифры нули. Тогда наше число делит тройку, в степени на один большую, чем число из предположения индукции. Это и требуется, переход доказан.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!