.00 №14 из ЕГЭ 2024
Ошибка.
Попробуйте повторить позже
Дана правильная пирамида точки и — середины рёбер и соответственно. Точки и на ребрах и соответственно расположены таким образом, что и прямые и пересекаются.
а) Докажите, что прямые и пересекаются в одной точке.
б) Найдите отношение
Источники:
а) Так как прямые и пересекаются, то точки лежат в одной плоскости. Тогда плоскости и пересекаются по прямой плоскости и пересекаются по прямой плоскости и пересекаются по прямой Если три плоскости попарно пересекаются по трём прямым, то либо эти прямые параллельны друг другу, либо это одна и та же прямая, либо они пересекаются в одной точке.
Параллельными эти прямые быть не могут, иначе получаем и так как — это середина то будет средней линией треугольника Но по условию точка не является серединой Противоречие.
Совпадать эти прямые тоже не могут, так как прямые и лежат в плоскостях разных граней. Значит, прямые и пересекаются в одной точке.
б) По теореме Менелая для треугольника и прямой
По теореме Менелая для треугольника и прямой
Содержание критерия | Балл |
Имеется верное доказательство утверждения пункта а), и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) | 2 |
ИЛИ | |
имеется верное доказательство утверждения пункта а), и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | |
Имеется верное доказательство утверждения пункта а) | 1 |
ИЛИ | |
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | |
ИЛИ | |
обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 3 |
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!