Тема . Задачи №14 из ЕГЭ прошлых лет

.00 №14 из ЕГЭ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №14 из егэ прошлых лет
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90994

В основании четырёхугольной пирамиды SABCD  лежит прямоугольник ABCD  со сторонами AB  = 8  и      √--
BC =  15.  Длины боковых рёбер пирамиды SA = 15,  SB = 17  и       √ --
SD = 4  15.

а) Докажите, что SA  — высота пирамиды SABCD.

б) Найдите расстояние от точки A  до плоскости (SBC ).

Источники: ЕГЭ 2024, резервный день, Дальний восток

Показать ответ и решение

а) Рассмотрим треугольники SAB  и SAD.  В них

pict

Таким образом, по теореме, обратной теореме Пифагора, треугольники SAB  и SAD  прямоугольные. Следовательно, SA ⊥ AB  и SA ⊥ AD,  значит, SA ⊥ (ABD ).

PIC

б) Проведем высоту AH  в треугольнике SAB.

Заметим, что BC  ⊥SA,  так как SA ⊥ (ABD ),  и BC  ⊥AB,  так как ABCD  — прямоугольник. Тогда BC ⊥ (SAB ).

Значит, BC ⊥ AH.  Также AH ⊥ SB  по построению. Тогда AH ⊥ (SBC ).  Таким образом, AH  — расстояние от A  до (SBC ).

В прямоугольном треугольнике SAB  :

AH = SA-⋅AB- = 15⋅8= 120
       SB       17    17
Ответ:

б) 120-
17

Критерии оценки

Содержание критерия

Балл

Имеется верное доказательство утверждения пункта а), и обоснованно получен верный ответ в пункте б)

3

Обоснованно получен верный ответ в пункте б)

2

ИЛИ

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

Имеется верное доказательство утверждения пункта а)

1

ИЛИ

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

ИЛИ

обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!