Тема 12. Исследование функций с помощью производной

12.01 Поиск точек экстремума у элементарных функций

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела исследование функций с помощью производной
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#1639

Найдите точку локального максимума функции     1
y = -x3 − 8x2 + 55x +  11
    3  .

Показать ответ и решение

1) y′ = x2 − 16x + 55  .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна 0  или не существует):

 2
x −  16x + 55 = 0  , откуда находим корни x1 = 5, x2 = 11  . Таким образом,

 ′
y =  (x −  5)(x − 11 ).
Для того, чтобы найти точки локального максимума/минимума функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства  ′
y :
 
PIC

 

3) Эскиз графика y  :
 
PIC

 

Таким образом, x = 5  – точка локального максимума функции y  .

Ответ: 5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!