Тема 12. Исследование функций с помощью производной

12.01 Поиск точек экстремума у элементарных функций

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела исследование функций с помощью производной
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#314

Найдите точку локального максимума функции

    3,2-
y =  x  + 5x + 1024  .

Показать ответ и решение

ОДЗ: x ⁄=  0  . Решим на ОДЗ:

1)

 ′     3,2-       5x2 −-3,2-    x2 −-0,-64
y  = −  x2 + 5 =     x2     = 5    x2    .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна 0  или не существует):

 x2 − 0,64
5-----2----= 0      ⇔      x2 − 0,64
    x
– на ОДЗ, откуда находим корни x1 = − 0,8, x2 = 0, 8  . Производная функции y  не существует при x =  0  , но x =  0  не входит в ОДЗ. Таким образом,
 ′    (x-−--0,8)(x-+--0,8)-
y = 5         x2        .
Для того, чтобы найти точки локального максимума/минимума функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства y′ :
 
PIC
 
3) Эскиз графика y  :
 
PIC
 
Таким образом, x =  − 0,8  – точка локального максимума функции y  .

Ответ: -0,8

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!