Тема 15. Решение неравенств

15.10 Смешанные неравенства

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела решение неравенств
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#513

Решите неравенство

logx(x + 1) ⋅ log(x+2)(x + 3 ) ⋅ ...⋅ log (x+2n)(x + 2n + 1)
---------ln(x-+-1)-⋅ ln-(x-+-2-) ⋅ ...⋅-ln(x-+-n-)-------≤ 0

при каждом n ∈ ℕ  .

Показать ответ и решение

ОДЗ:

(
| x >  0
||||
||| x ⁄=  1
||| x + 1 >  0
||||
||| x + 2 >  0                    {
{ x + 2 ⁄=  1                      x > 0
|                       ⇔
||| x + 3 >  0                      x ⁄= 1
||| ...
|||| x + 2n  > 0
|||
||| x + 2n  ⁄= 1
|( x + 2n +  1 > 0

По методу рационализации: на ОДЗ

logx(x-+-1) ⋅-log(x+2)(x +-3) ⋅ ...⋅ log-(x+2n)(x-+-2n-+-1)-≤ 0 ⇔
         ln(x + 1) ⋅ ln(x + 2) ⋅ ...⋅ ln (x + n)
      (x − 1)(x + 1 − 1)(x + 2 − 1 )(x + 3 − 1) ⋅ ...⋅ (x + 2n − 1)(x + 2n + 1 − 1)
 ⇔    -------------------------------------------------------------------------≤  0   ⇔
                             (x + 1 − 1) ⋅ ... ⋅ (x + n − 1)
      (x − 1)x(x + 1)(x + 2) ⋅ ...⋅ (x + 2n − 1)(x + 2n )
 ⇔    ------------------------------------------------≤  0.
                     x ⋅ ...⋅ (x + n − 1 )

С учётом ОДЗ последнее неравенство равносильно

(x − 1) ≤ 0.

Таким образом, с учётом ОДЗ:

x ∈ (0;1).
Ответ:

(0;1)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!