Тема 15. Решение неравенств

15.07 Метод рационализации

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела решение неравенств
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#73289

Решите неравенство

log5(3x − 13)
-log5-(x-− 4) ≥1
Показать ответ и решение

ОДЗ:

(                     (|    13          (
|{ 3x− 13> 0           |{ x>  3          { x> 13
|( x− 4> 0         ⇔   || x> 4       ⇔   (     3
  log5(x− 4)⁄= 0        ( x− 4⁄= 1          x⁄= 5

Итоговая ОДЗ:    (    )
x∈   13-;5  ∪(5;+∞ ).
     3

Переходим к решению неравенства. Перенесем единицу в левую часть неравенства и приведем к общему знаменателю.

    log (3x− 13)
    -lo5g-(x−-4)-− 1≥ 0
       5
log5(3x−-13)−-log5(x−-4)≥ 0
      log5 (x − 4)

Воспользуемся методом рационализации для логарифмической функции.

(5−-1)((3x-−-13)−-(x−-4))≥ 0
    (5 − 1)(x− 4− 1)
        2x−-9
         x− 5 ≥ 0

Применим метод интервалов:

9
x25+−+

С учетом ОДЗ:

   (     ]
x∈   13; 9 ∪ (5;+∞ ).
     3  2
Ответ:

   (     ]
x ∈  13; 9 ∪ (5;+ ∞)
     3  2

Критерии оценки

Содержание критерия

Балл

Обоснованно получен верный ответ

2

Обоснованно получен ответ, отличающийся от верного исключением/включением граничных точек,

1

ИЛИ

получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

При этом в первом случае выставления 1 балла допускаются только ошибки в строгости неравенства: «<  » вместо «≤ » или наоборот. Если в ответ включено значение переменной, при котором одна из частей неравенства не имеет смысла, то выставляется оценка «0 баллов».

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!