17.03 Задачи формата ЕГЭ
Ошибка.
Попробуйте повторить позже
Окружность, вписанная в трапецию касается боковых сторон
и
в точках
и
соответственно.
а) Докажите, что сумма квадратов расстояний от центра окружности до вершин трапеции равна сумме квадратов длин боковых сторон трапеции.
б) Найдите площадь трапеции если известно, что
а) Так как окружность вписана, то ее центр лежит на пересечении биссектрис углов трапеции. Следовательно,
Так как по определению трапеции
то
Аналогично доказывается, что Тогда из прямоугольных
и
имеем:
б) Так как окружность вписана, то имеем:
Обозначим также радиус окружности за
По теореме Пифагора из прямоугольных и
имеем:
Тогда в прямоугольном
Аналогично в прямоугольных
имеем:
Тогда площадь трапеции равна произведению полупериметра на радиус вписанной окружности:
Содержание критерия | Балл |
Имеется верное доказательство утверждения пункта а) и обоснованно получен верный ответ в пункте б) | 3 |
Обоснованно получен верный ответ в пункте б) | 2 |
ИЛИ | |
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | |
Имеется верное доказательство утверждения пункта а), | 1 |
ИЛИ | |
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, | |
ИЛИ | |
обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 3 |
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!