16.05 Банковский кредит: другие схемы платежей
Ошибка.
Попробуйте повторить позже
В июле 2025 года планируется взять кредит в банке на сумму 900 тысяч рублей на 10 лет. Условия его возврата таковы:
— в январе 2026, 2027, 2028, 2029 и 2030 годов долг возрастает на по
сравнению с концом предыдущего года;
— в январе 2031, 2032, 2033, 2034 и 2035 годов долг возрастает на по
сравнению с концом предыдущего года;
— со февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
— к июлю 2035 года кредит должен быть погашен полностью.
Найдите общую сумму выплат после полного погашения кредита.
Пусть сумма, взятая в кредит, это тыс. руб. При этом сумма
долга в течение десяти лет снижается равномерно, то есть каждый год
уменьшается на одну десятую часть от
Составим таблицу с учетом
этого.
Искомая сумма выплат это начальная сумма кредита плюс сумма всех выплаченных процентов, которые можно найти, используя формулу для суммы арифметической прогрессии. Поскольку в течение первых пяти лет действовала одна процентная ставка, а в течение следующих пяти лет другая, у нас две арифметические прогрессии по 5 слагаемых в каждой:
Подставим и получим искомую сумму выплат:
тыс. рублей.
Содержание критерия | Балл |
Обоснованно получен верный ответ | 2 |
Верно построена математическая модель | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Подробнее: 1 балл выставляется в тех случаях, когда сюжетное условие задачи верно сведено к решению математической (арифметической, алгебраической, функциональной, геометрической) задачи, но именно к решению, а не к отдельному равенству, набору уравнений, уравнению, задающему функцию, и т.п. Предъявленный текст должен включать описание того, как построена модель.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!