Тема 18. Задачи с параметром

18.21 Графика. Нахождение касательной к графику

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70244

Найдите все значения параметра a  , при которых система уравнений

{    √---2-------
 y =  − x − 6x − 8
 y +ax = a+ 1

имеет единственное решение.

Показать ответ и решение

Рассмотрим систему внимательнее и преобразуем её условия:

{y2 = (√ −x2−-6x−-8)2,y ≥0

 y = −ax+ a +1

{ 2   2
 y  +x  +6x +8 = 0,y ≥0
 y = −a(x− 1)+ 1

{ 2   2
 y  +x + 6x +8 +1 = 0+ 1,y ≥0
 y = −a(x− 1)+ 1

{y2 + (x +3)2 = 1,y ≥ 0
  y = −a(x− 1)+ 1

Получили полуокружность и пучок прямых, проходящих через точку (1;1).  Перейдём на координатную плоскость xOy :

1 случай:

PIC

При a= 0  прямая y = − a(x − 1)+ 1  становится параллельной оси абсцисс и проходит ровно через одну точку C  полуокружности. Иными словами, OC  касается полуокружности – такой случай нам подходит и a =0  – часть ответа.

2 случай:

PIC

Когда a∈ [− 13;− 15)  прямая y = −a(x− 1)+ 1  пересекает полуокружность ровно в одной точке. Иными словами, мы берём в ответ все прямые, лежащие между прямыми AO  и BO  , включая AO  и исключая BO  . BO  пересекает полуокружность уже в двух точках.

Вычисления ключевых значений параметра:
Прямая CO  (проходит через точку C(−3;1)  ):

1 = −a(−3− 1)+ 1,

a= 0.

Прямая AO  (проходит через точку A(− 2;0)  ):

0 = −a(−2− 1)+ 1,

a= − 1.
     3

Прямая BO  (проходит через точку B (− 4;0)  ):

0 = −a(−4− 1)+ 1,

a= − 1.
     5
Ответ:

a ∈ [− 1;− 1) ∪{0}
      3  5 .

Критерии оценки

Содержание критерия

Балл

 Обоснованно получен верный ответ

4

С помощью верного рассуждения получены все верные значения параметра, но решение недостаточно обосновано

3

ИЛИ

в ответ включена точка − 15

ИЛИ

потеряна точка − 1
  3

ИЛИ

потеряна точка 0

С помощью верного рассуждения получен неверный ответ из-за вычислительной ошибки, при этом верно выполнены все шаги решения

2

ИЛИ

полученный ответ отличается от правильного включением/исключением двух или трёх точек из набора − 13,− 15,0

В случае аналитического решения найдено значение a = 0

1

ИЛИ

в случае графического решения: задача верно сведена к исследованию взаимного расположения линий (изображены необходимые фигуры, учтены ограничения, указана связь исходной задачи с построенными фигурами)

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!