05 Законы сохранения в механике
Ошибка.
Попробуйте повторить позже
Два шарика массами кг и кг движутся навстречу друг к другу с одинаковыми скоростями равными м/с. Найти скорость шариков после абсолютно неупругого столкновения.
Источники:
Закон сохранения импульса выглядит следующим образом
где и – импульсы шариков до столкновения, – импульс системы после столкновения.
Так как шарики сталкиваются неупруго, то они движутся как одно целое. Импульс находится по формуле:
где – масса тела, – его скорость.
Запишем закон сохранения импульса, выбрав за положительную ось направление движения второго шарика:
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения импульса, формула импульса); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Камень массой кг бросают вертикально вверх с начальной скоростью м/с, после трех секунд полета в него влетает снаряд массой кг летящий горизонтально со скоростью м/c, и застревает в нем. Найдите угол отклонения от первоначальной траектории полета камня.
Сделаем рисунок системы "камень+снаряд"после столкновения.
Где – импульс камня до столкновения, – импульс снаряда до столкновения, О – точка столкновения камня и снаряда, – суммарный импульс системы после столкновения, а угол – угол отклонения от первоначальной траектории.
Камень, летящий вверх, движется равнозамедленно. Найдем скорость камня в момент столкновения по формуле:
Где – время полета камня. Скорость камня в момент столкновения равна
Так как система замкнутая, то выполняется закон сохранения импульса.
Импульсы тел до столкновения найдем по формулам: и
Тогда , а
Спроецируем закон сохранения импульса на оси и и запишем полученные уравнения
|
Выразим из каждого уравнения
|
Приравняем (1) и (2)
Поделим уравнение на
Следовательно, угол отклонения составил 30 градусов
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: уравнение кинематики для описания изменения скорости при движении в поле силы тяжести, закон сохранения импульса, формула импульса тела); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Камень массой кг бросают вертикально вверх с начальной скоростью м/с, после трех секунд полета в него влетает снаряд массой кг, летящий горизонтально со скоростью м/c, и застревает в нем. Найдите импульс системы "камень+снаряд"после столкновения.
Сделаем рисунок системы "камень+снаряд"после столкновения.
Где – импульс камня до столкновения, – импульс снаряда до столкновения, О – точка столкновения камня и снаряда, – суммарный импульс системы после столкновения, а угол – угол отклонения от первоначальной траектории.
Камень, летящий вверх, движется равнозамедленно. Найдем скорость камня в момент столкновения по формуле:
Где – время полета камня. Скорость камня в момент столкновения равна
Так как система замкнутая, то выполняется закон сохранения импульса.
Импульсы тел до столкновения найдем по формулам: и
Тогда , а По теореме Пифагора можно найти
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: уравнение кинематики для описания изменения скорости при движении в поле силы тяжести, закон сохранения импульса, формула импульса тела); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Камень массой кг брошен с высоты м под углом к горизонту с начальной скоростью м/c. Найдите кинетическую энергию камня на высоте м.
По закону сохранения энергии:
Где – потенциальная энергия на высоте , – кинетическая энергия на высоте , – потенциальная энергия на высоте , а – кинетическая энергия на высоте . Выразим
Найдем потенциальную энергию на высоте по формуле:
А кинетическую энергию на высоте по формуле:
Потенциальная энергия на высоте находится по формуле:
Подставим формулы (2), (3) и (4) в (1)
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон изменения и сохранения механической энергии, формула кинетической энергии материальной точки, формула потенциальной энергии тела в однородном поле тяжести); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Камень массой кг брошен с высоты м под углом к горизонту с начальной скоростью м/c. Найдите импульс камня на высоте м.
По закону сохранения энергии:
Где – потенциальная энергия на высоте , – кинетическая энергия на высоте , – потенциальная энергия на высоте , – кинетическая энергия на высоте , а – кинетическая энергия камня на высоте
Найдем потенциальную энергию на высоте по формуле:
А кинетическую энергию на высоте по формуле:
Потенциальная энергия на высоте находится по формуле:
А кинетическую энергию на высоте по формуле:
Подставим формулы (2) (3) (4) в (1)
Подставим значение в формулу (5)
Выразим скорость тела на высоте
Импульс тела найдем по формуле:
Подставим формулу (5) в формулу импульса тела
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон изменения и сохранения механической энергии, формула кинетической энергии материальной точки, формула потенциальной энергии тела в однородном поле тяжести, формула импульса материальной точки); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Шарик массой кг падает с высоты м, без начальной скорости, в результате его удара об пол выделилась количество теплоты Дж. Найдите максимальную высоту подъема шарика после удара о землю.
Так как шарик падает без начальной скорости, то кинетическая энергия вначале полета равна 0, аналогично с кинетической энергией на максимальной высоте после удара шарика об землю, следовательно, закон сохранения энергии можно переписать в виде:
Где – потенциальная энергия на высоте , – потенциальная энергия на максимальной высоте после удара. Они находятся по формулам:
– максимальная высота подъема камня после удара о землю. Подставим (2) и (3) в (1)
Выразим
Подставим числа из условия
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения энергии с учетом количества теплоты, выделившейся при ударе, формула потенциальной энергии тела в однородном поле тяжести); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Снаряд массой разрывается на два равных осколка, один летит под углом 90 градусов к первоначальному направлению движения, другой под углом 30 градусов, скорость первого осколка Найдите импульс снаряда до разрыва.
Сделаем рисунок
Где – импульс снаряда, – импульс первого осколка, – импульс второго осколка.
По закону сохранения импульса
Спроецируем закон сохранения импульса на оси и и запишем полученные уравнения
|
Выразим из (2)
Затем подставим (3) в (1)
Импульс первого осколка массой находится по формуле:
Подставим (5) в (4)
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения импульса, формула импульса); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Камень массой брошен под углом Начальный модуль импульса тела равен Чему равна кинетическая энергия камня в верхней точке траектории его движения?
Во время подъема вертикальная составляющая импульса будет уменьшаться, пока не достигнет нуля, а горизонтальная будет неизменна и она находится по формуле:
Кинетическая энергия камня в верхней точке находится по формуле:
Подставим (1) в (2)
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: формула импульса, формула кинетической энергии); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Шайбе массой находящейся на наклонной плоскости, сообщили скорость направленную вверх вдоль наклонной плоскости. Угол наклона плоскости Какова будет скорость шайбы, после того, как она пройдет если сила трения равна
Запишем закон об изменении кинетической энергии
Где – кинетическая энергия тела в начале движения, – кинетическая энергия в конце движения – потенциальная энергия в конце движения, а – количество теплоты. Закон сохранения энергии можно переписать в виде
Где – высота поднятия шайбы м, а – работа силы трения. Выразим конечную скорость
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон изменения кинетической энергии, формула кинетической энергии тела, формула потенциальной энергии тела в поле силы тяжести, формула работы силы трения); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Шайбе массой кг, находящейся на наклонной плоскости, сообщили скорость м/с, направленную вверх вдоль наклонной плоскости. Угол наклона плоскости . Шайба остановилась на расстоянии м от начала движения. Чему равна сила трения шайбы о плоскость?
Запишем закон об изменении кинетической энергии
Где – кинетическая энергия тела в начале движения, – потенциальная энергия в конце движения, а – количество теплоты. Закон сохранения энергии можно переписать в виде
Где – высота поднятия шайбы , а – работа силы трения. Работа силы трения равна Выразим силу трения с учетом (1)
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон изменения кинетической энергии, формула кинетической энергии тела, формула потенциальной энергии тела в поле силы тяжести, формула работы силы трения); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Шар массой кг со скоростью м/с врезается в неподвижный шар массой кг. В результате их упругого столкновения второй шар приобрел скорость, а первый отскочил в обратном направлении. Найдите кинетическую энергию первого шара после столкновения.
Запишем систему, состоящую из закона сохранения импульса и закона сохранения энергии
|
Запишем систему с учетом проекций векторов
|
Где и – импульс и кинетическая энергия первого шара до столкновения, и – импульс и кинетическая энергия первого шара после столкновения, а и – импульс и кинетическая энергия второго шара после столкновения. Импульс находится по формуле:
А кинетическая энергия тела:
Подставим (1) и (2) в систему с учетом индексов
|
Умножим на 2 второе уравнение
|
Перенесем с в одну сторону, а с в другую и вынесем массы за скобку
|
Во втором уравнении преобразуем разность квадратов
|
Поделим (2) на (1)
Подставим (3) в (1) и выразим
Подставим (4) в формулу для нахождения кинетической энергии первого шара после столкновения
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения импульса в векторной форме и в проекции на координатную ось, закон изменения и сохранения механической энергии, формула импульса материальной точки, формула кинетической энергии материальной точки); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Шар начал падать с некоторой высоты без начальной скорости. Пролетев 50 м, шар приобрел скорость 20 м/с. Найдите чему равно отношение изменения потенциальной энергии к работе сопротивления воздуха.
Запишем закон сохранения энергии
где – кинетическая энергия тела в начале движения, – кинетическая энергия тела в конце движения, –
потенциальная энергия в начале движения – потенциальная энергия в конце движения, а – работа сопротивления
воздуха.
Пусть начальный уровень () конечная точка пути, тогда конечная потенциальная энергия равна нулю, и
начальная кинетическая тоже, так как начальная скорость равна нулю. Тогда закон сохранения энергии перепишем в
виде.
Или
Отсюда работа сопротивления воздуха
А изменение потенциальной энергии
Найдем искомое отношение
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения механической энергии, формула потенциальной энергии в поле силы тяжести, формула кинетической энергии, выражена работа сопротивления воздуха, расписано изменение потенциальной энергии в поле силы тяжести); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
При разрыве нити, удерживающей пружину в сжатом на 1 см состоянии (см. рисунок), шарик приобретает скорость 10 м/с. Жесткость пружины 2кН/м. Какова масса шарика. Колебаниями пружины после отрыва шарика пренебречь.
При разрыве нити потенциальная энергия пружины переходит в кинетическую энергию мяча.
По закону сохранения энергии:
где – потенциальная энергия деформированной пружины, – кинетическая энергия мяча, – жесткость пружины,
– сжатие, – масса шарика, – скорость шарика.
Отсюда масса шарика
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: формула потенциальной энергии деформированной пружины, формула кинетической энергии, закон сохранения энергии); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Человек на санках, общей массой 100 кг, спустился с ледяной горы высотой 6 м. Сила трения при его движении по горизонтальной поверхности равна 160 Н. Какое расстояние проехал он по горизонтали до остановки? Считать, что по склону горы санки скользили без трения.
Источники:
Потенциальная энергия на высоте м перейдет в кинетическую энергию у подножья горки, которая впоследствии перейдет в работу сил трения, то есть
Или
где – масса человека и санок, – сила трения, – расстояние движения по горизонтали.
Откуда равно
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон изменения и сохранения механической энергии, формула работы силы при перемещении тела, формула потенциальной энергии); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Тело массой 2 кг бросили вертикально вверх с некоторой высоты, при падении на землю тело имело скорость 6 м/с. Потенциальная энергия в момент броска равна 32 Дж. С какой начальной скоростью бросили тело? Сопротивлением воздуха пренебречь.
Кинетическая энергия находится по формуле:
где – масса тела, – его скорость
Пусть тело бросили с начальной скоростью , а конечная скорость равна , тогда выполняется закон сохранения энергии, при
этом вся потенциальная энергия тела перейдет в кинетическую.
где – масса тела, – начальная потенциальная энергия тела.
Отсюда начальная скорость
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: формула кинетической энергии, закон сохранения энергии); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Шарик на длинной лёгкой нерастяжимой нити совершает колебания. Максимальная потенциальная энергия шарика в поле тяжести, если считать её равной нулю в положении равновесия, равна 0,8 Дж. Максимальная скорость шарика в процессе колебаний равна 2 м/с. Какова масса шарика? Сопротивлением воздуха пренебречь.
Так как сопротивлением воздуха пренебречь, то вся потенциальная энергия перейдет в кинетическую, то есть
где – масса шарика, – его скорость Отсюда масса шарика
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения механической энергии, формула кинетической энергии тела); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Груз массой 2 кг, закреплённый на пружине жёсткостью 200 Н/м, совершает гармонические колебания с амплитудой 10 см. Какова максимальная скорость груза?
Вся потенциальная энергия пружины перейдет в кинетическую, то есть
где – жесткость пружины, – максимальное растяжение пружины, – масса груза, – максимальная скорость груза. Найдем скорость груза
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения механической энергии, формула кинетической энергии тела, формула потенциальной энергии деформированной пружины); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Груз массой 2 кг, закреплённый на пружине жесткостью 200 Н/м, совершает горизонтальные гармонические колебания. Максимальное ускорение груза при этом равно 10 м/с Какова максимальная скорость груза?
По второму закону Ньютона
Вся потенциальная энергия пружины перейдет в кинетическую, то есть
где – жесткость пружины, – максимальное растяжение пружины, – масса груза, – максимальная скорость груза. Найдем скорость груза
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: второй закон Ньютона, закон сохранения механической энергии, формула кинетической энергии тела, формула потенциальной энергии деформированной пружины); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Граната, летящая с некоторой скоростью, разрывается на 2 осколка. Первый осколок летит перпендикулярно движению гранаты со скоростью м/с. Второй осколок летит со скоростью м/с под углом к первоначальной траектории движения. Найдите отношение массы первого осколка к массе второго осколка.
Спроецируем импульсы осколков на ось, перпендикулярную оси движения гранаты
где и – импульс первого и второго осколков. Распишем импульсы по формуле импульса и получим
Отсюда отношение массы первого к массе второго
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения импульса, формула импульса); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Снаряд, летящий с некоторой скоростью, распадается на два осколка. Скорость большего осколка по величине равна начальной скорости снаряда и направлена перпендикулярно к ней. Скорость другого осколка по величине в 5 раз больше первоначальной. Найдите отношение масс осколков.
Запишем закон сохранения импульса в векторной форме:
где и – массы большего и меньшего осколков, – начальная скорость снаряда, и – скорости большего и меньшего осколков.
Изобразим закон сохранения импульса на рисунке.
Тогда из векторного треугольника:
так как по условию , , получаем
делим на и получим квадратное уравнение относительно
Находим дискриминант
Отношение масс не может быть отрицательным, значит, в ответ пойдет 3.
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 2 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: закон сохранения импульса, формула импульса); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования, | |
приводящие к правильному ответу; | |
IV) представлен правильный ответ | |
Правильно записаны все необходимые положения теории, | 1 |
физические законы, закономерности, и проведены преобразования, | |
направленные на решение задачи, но имеется один или несколько | |
из следующих недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении имеются лишние записи, не входящие в решение | |
(возможно, неверные), которые не отделены от решения | |
и не зачёркнуты. | |
И (ИЛИ)
| |
В необходимых математических преобразованиях допущены | |
ошибки, и (или) в математических преобразованиях пропущены | |
логически важные шаги. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерения величины) |
|
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1 или 2 балла | |
Максимальный балл | 2 |