.01 МКТ
Ошибка.
Попробуйте повторить позже
В вертикальном цилиндрическом сосуде с площадью поперечного сечения , ограниченном сверху подвижным
поршнем массой
кг, находится воздух при комнатной температуре. Первоначально поршень находился на
высоте
см от дна сосуда. Если на поршень положить груз массой
кг, то он окажется на высоте
см от дна сосуда. Определите площадь поперечного сечения поршня. Воздух считать идеальным газом, а его
температуру – неизменной. Атмосферное давление принять равным
Па. Трение между стенками сосуда и поршнем не
учитывать.
где – давление газа без груза,
– давление газа при добавлении груза,
– атмосферное давление.
Запишем второй закон Ньютона (сразу в проекциях) до добавления груза, сразу учитывая то, что ускорение поршня равно нулю
:
и после добавления груза (ускорение поршня снова будет равно нулю):
Эти уравнения можно объединить в систему:
|
Также запишем уравнение Менделеева-Клапейрона
где – начальный объём газа,
– количество вещества,
– температура газа,
– конечный объём газа.
Объёмы газов равны:
Объединяя (3) – (5), получаем
(Данный вывод также можно было получить из того, что процесс изотермический и воспользоваться законом Бойля-Мариотта). Приравняем (1) и (2)
С учётом (6)
Подставим в (2)
Подставим числа из условия
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 3 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае: второй закон Ньютона, формула связи силы и давления, уравнение Менделеева-Клапейрона, формула объёма через высоту и площадь); | |
II) описаны все вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений, используемых в условии | |
задачи, и стандартных обозначений величин, используемых при | |
написании физических законов); | |
III) представлены необходимые математические преобразования и | |
расчёты, приводящие к правильному числовому ответу | |
(допускается решение «по частям» с промежуточными | |
вычислениями); | |
IV) представлен правильный ответ с указанием единиц измерения | |
искомой величины | |
Правильно записаны все необходимые положения теории, | 2 |
физические законы, закономерности, и проведены необходимые | |
преобразования, но имеется один или несколько из следующих | |
недостатков | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И (ИЛИ)
| |
В решении лишние записи, не входящие в решение (возможно, | |
неверные), не отделены от решения (не зачёркнуты; не заключены | |
в скобки, рамку и т.п.). | |
И (ИЛИ)
| |
В необходимых математических преобразованиях или вычислениях | |
допущены ошибки, и (или) преобразования/вычисления не | |
доведены до конца. | |
И (ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка | |
Представлены записи, соответствующие одному из следующих | 1 |
случаев. | |
Представлены только положения и формулы, выражающие | |
физические законы, применение которых необходимо для решения | |
задачи, без каких-либо преобразований с их использованием, | |
направленных на решение задачи, и ответа. | |
ИЛИ
| |
В решении отсутствует ОДНА из исходных формул, необходимая | |
для решения задачи (или утверждение, лежащее в основе решения), | |
но присутствуют логически верные преобразования с имеющимися | |
формулами, направленные на решение задачи. | |
ИЛИ
| |
В ОДНОЙ из исходных формул, необходимых для решения задачи | |
(или в утверждении, лежащем в основе решения), допущена | |
ошибка, но присутствуют логически верные преобразования с | |
имеющимися формулами, направленные на решение задачи | |
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1, 2, 3 балла | |
Максимальный балл | 3 |
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!