Тема . №24 МКТ. Термодинамика (Расчетная задача высокого уровня сложности)

.02 Термодинамика

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №24 мкт. термодинамика (расчетная задача высокого уровня сложности)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#14541

Сосуд объемом V = 10  л содержит ν = 5  моль гелий при температуре      ∘
t= 17C  . Если сообщить гелию количество теплоты Q = 3  кДж, то сосуд лопнет. Какую максимальную разность давлений внутри сосуда и снаружи него он выдерживает? Атмосферное давление p0 = 105  Па.

Источники: Основная волна 2020

Показать ответ и решение

Запишем уравнение Клапейрона – Менделеева

pmaxV = νRTmax   (1)

где pmax  и Tmax  – максимальные давление и температура газа соответственно.
Газ в процессе подвода тепла не увеличивает объем, поэтому работа газа в данном процессе равна 0, следовательно, первый закон термодинамики запишется в виде:

Q = ΔU = 3νR (Tmax − T0)
         2

Выразим отсюда конечную температуру:

T   = -2Q-+ T
 max  3νR    0

Подставим конечную температуру в (1) и выразим давление

pmax =-2Q-+ νRT0-=
      3V     V

Откуда разность давлений

Δp = pmax− p0 = 2-⋅3000-Дж-+ 5-моль⋅8,31-Дж/(моль⋅ К-)⋅290-К − 105 Па= 1′304′950 Па
                3⋅10−2 м3             10−2 м3

Примечание:начальное давление в сосуде нельзя считать равным P0,  поскольку это не сказано в условии задачи, его можно найти из уравнение Менделеева-Клапейрона

Ответ:
Критерии оценки

Критерии оценивания выполнения задачи

Баллы

Приведено полное решение, включающее следующие элементы:

3

I) записаны положения теории и физические законы,

закономерности, применение которых необходимо для решения

задачи выбранным способом (в данном случае: первый закон термодинамики, уравнение Менделеева – Клапейрона, формула для внутренней энергии одноатомного идеального газа. Сказано, что процесс подвода теплоты является изохорным);

II) описаны все вновь вводимые в решении буквенные обозначения

физических величин (за исключением обозначений констант,

указанных в варианте КИМ, обозначений, используемых в условии

задачи, и стандартных обозначений величин, используемых при

написании физических законов);

III) представлены необходимые математические преобразования и

расчёты, приводящие к правильному числовому ответу

(допускается решение «по частям» с промежуточными

вычислениями);

IV) представлен правильный ответ с указанием единиц измерения

искомой величины

Правильно записаны все необходимые положения теории,

2

физические законы, закономерности, и проведены необходимые

преобразования, но имеется один или несколько из следующих

недостатков

Записи, соответствующие пункту II, представлены не в полном

объёме или отсутствуют.

И (ИЛИ)

В решении лишние записи, не входящие в решение (возможно,

неверные), не отделены от решения (не зачёркнуты; не заключены

в скобки, рамку и т.п.).

И (ИЛИ)

В необходимых математических преобразованиях или вычислениях

допущены ошибки, и (или) преобразования/вычисления не

доведены до конца.

И (ИЛИ)

Отсутствует пункт IV, или в нём допущена ошибка

Представлены записи, соответствующие одному из следующих

1

случаев.

Представлены только положения и формулы, выражающие

физические законы, применение которых необходимо для решения

задачи, без каких-либо преобразований с их использованием,

направленных на решение задачи, и ответа.

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая

для решения задачи (или утверждение, лежащее в основе решения),

но присутствуют логически верные преобразования с имеющимися

формулами, направленные на решение задачи.

ИЛИ

В ОДНОЙ из исходных формул, необходимых для решения задачи

(или в утверждении, лежащем в основе решения), допущена

ошибка, но присутствуют логически верные преобразования с

имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным

0

критериям выставления оценок в 1, 2, 3 балла

Максимальный балл

3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!