Тема . №26 Механика (Расчетная задача высокого уровня сложности+обоснование)

.04 Законы сохранения в механике

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №26 механика (расчетная задача высокого уровня сложности+обоснование)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#17514

Маленький шарик падает сверху на наклонную плоскость и упруго отражается от неё. Угол наклона плоскости к горизонту равен 30∘.  На какое расстояние по горизонтали перемещается шарик между первым и вторым ударами о плоскость? Скорость шарика непосредственно перед первым ударом направлена вертикально вниз и равна 1 м/с.  Какие законы Вы использовали для описания движения? Обоснуйте их применение к данному случаю.

Показать ответ и решение

Обоснование

1. Выберем Землю как инерциальную систему отсчета, используемые законы будем записывать в этой СО.

2. Движение тела поступательное, поэтому будем считать его материальной точкой.

3. В условии данной задачи пренебрегаем силой сопротивления воздуха, поэтому тело движется только под действитем силы тяжести с ускорением свободного падения, равным 10 м/ с2  и направленным вертикально вниз. Ось Oy  направлена перпендикулярно наклонной плоскости. Ось Ox  направлена параллельно плоскости вниз.

4. Проекция ускорения на ось Oy  равна − g cosα  , поэтому описывать движение по вертикали будем с помощью законов прямолинейного равноускоренного движения. Проекция ускорения на ось Ox  равна gsinα  , поэтому описывать движение по горизонтали будем с помощью законов прямолинейного равноускоренного движения.

Решение

Введем систему координат. При упругом ударе угол падения равен углу отражения. Угол падения равен углу наклона плоскости (из геометрии), следовательно, равен 30∘ . Из этого следует, что после удара угол между вектором скорости и поверхностью наклонной плоскости равен β = 2α = 60∘ .

PIC

Спроецируем вектор скорости и ускорения на каждую ось:

υ0x = υ0sinα   υ0y = υ0cosα

ax = gsin α  ay = − gcosα

Законы движения шарика имеют вид:

                   2
x = υ0 sinαt + gsin-αt
                2

             gcosαt2
y = υ0cosαt−    2

В момент второго соударения y = 0  , x = l  :

                  2
l = υ0sinαt+ g-sinαt
               2

             g-cosαt2      2υ0   2⋅1-м/с
0 = υ0cosαt−    2    ⇒  t = g  = 10 м/с2 = 0,2 c

Из рисунка видно, что L = lcosα

        (                )   √ -(                                  )
L = cosα  υ0sinαt+ gsin-αt2  = --3⋅ 1 м/ с⋅0,5⋅0,2c+ 10 м/-с2 ⋅0,5⋅(0,2-c)2 ≈ 0,17 м
                     2        2                          2
Ответ:
Критерии оценки

Критерии оценивания выполнения задачи

Баллы

Критерий 1

Верно обоснована возможность испольования законов

1

(закономерностей). В данном случае: выбор ИСО, модель материальной точки

В обосновании возможности использования законов

0

(закономерностей) допущена ошибка

ИЛИ

Обоснование отсутствует

Критерий 2

Приведено полное решение, включающее следующие элементы:

3

I) записаны положения теории и физические законы,

закономерности, применение которых необходимо для решения

задачи выбранным способом (в данном случае - формулы кинематики прямолинейного равноускоренного движения);

II) описаны вновь вводимые в решении буквенные обозначения

физических величин (за исключением обозначений констант,

указанных в варианте КИМ, обозначений величин, используемых

в условии задачи, и стандартных обозначений величин,

используемых при написании физических законов);

III) проведены необходимые математические преобразования

и расчёты (подстановка числовых данных в конечную формулу),

приводящие к правильному числовому ответу (допускается решение

«по частям» с промежуточными вычислениями);

IV) представлен правильный ответ с указанием единиц измерения

фиизческой величины

Правильно записаны все необходимые положения теории,

2

фиизческие законы, закономерности, и проведены необходимые

преобразования, но имеется один или несколько из следующих

недостатков.

Записи, соответствующие пункту II, представлены не в полном

объёме или отсутствуют.

И(ИЛИ)

В решении имеются лишние записы, не входящие в решение

(возможно, неверные), которые не отделены от решения и не

зачёркнуты

И(ИЛИ)

В необходимых математических преобразованиях или вычислениях

допущены ошибки, и(или) в математических преобразованиях/

вычислениях пропущены логически важные шаги.

И(ИЛИ)

Отсутствует пункт IV, или в нём допущена ошибка (в том числе

в записи единиц измерений величины)

Представлены записи, соответствующие одному из следующих

1

случаев.

Представлены только положения и формулы, выражающие

физические законы, применение которых необходимо для решения

данной задачи, без каких-либо преобразований с их

использованием, направленных на решение задачи.

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая

для решения данной задачи (или утверждение, лежащее в основе

решения), но присутствуют логически верные преобразования

с имеющимися формулами, направленные на решение задачи.

ИЛИ

В ОДНОЙ из исходных формул, необходимых для решения данной

задачи (или в утверждения, лежащем в основе решения), допущена

ошибка, но присутствуют логически верные преобразования

с имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным

0

критериям выставления оценок в 1, 2, 3 балла

Максимальный балл

4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!