Тема 19. Задачи на теорию чисел

19.09 Четность и нечетность

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи на теорию чисел
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#136970

По кругу расставлено N  различных натуральных чисел, меньших 365, так, что сумма любых трёх последовательных чисел не делится на 2, а сумма любых четырёх последовательных делится на 4. Может ли на круге быть 200 чисел?

Показать ответ и решение

Докажем, что все расставленные числа нечетные. Рассмотрим любое число из круга. Сумма трех чисел слева от него по условию не делится на 2, то есть нечетная. Сумма этих чисел и рассматриваемого числа делится на 4, то есть четна, следовательно, рассматриваемое число нечетно. Таким образом, можем получить, что все числа нечетные.

Среди натуральных чисел, меньших 365, есть всего 182 различных нечетных числа, значит, в круге не могло быть 200 чисел.

Ответ: Нет, не может
Критерии оценки

Содержание критерия

Балл

Обоснованно получены верные ответы в пунктах а), б) и в)

4

Обоснованно получен верный ответ в пункте в) и обоснованно получен верный ответ в пунктах а) или б)

3

Обоснованно получены верные ответы в пунктах а) и б),

2

ИЛИ

обоснованно получен верный ответ в пункте в)

Обоснованно получен верный ответ в пунктах а) или б)

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!