19.17 Произвольные последовательности чисел
Ошибка.
Попробуйте повторить позже
Илья придумал бесконечную последовательность натуральных чисел, в которой каждый член, начиная с
сотого, равен последней цифре квадрата предыдущего члена (в десятичной записи). Можно ли с
уверенностью утверждать, что, начиная с некоторого номера , члены этой последовательности
повторяются периодически c некоторым периодом
(т.е. при любых
выполнено равенство
)?
Заметим, что каждый член последовательности, начиная с сотого, однозначно определяется единственным предыдущим ему членом последовательности, следовательно, если в данной последовательности, начиная с сотого члена, дважды встречается одно и то же число, то она периодическая.
Остаётся показать, что некоторое число такого вида действительно встретится в последовательности Ильи не менее двух раз, начиная с сотого члена.
Начиная с сотого члена, каждый член последовательности совпадает либо с 0, либо с 1, ..., либо с 9.
Так как последовательность бесконечная, то найдётся член этой последовательности, который повторяется бесконечное число раз. Таким образом, последовательность Ильи периодична.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!