17.09 Биссектриса и её свойства
Ошибка.
Попробуйте повторить позже
Биссектрисы соседних углов четырехугольника пересекаются в середине его стороны. Докажите, что либо у этого четырехугольника равны два угла, либо две стороны параллельны.
Рассмотрим рисунок. Если то доказывать нечего. Если нет, то
продолжим эти стороны до пересечения в точке
- 1.
- Пусть
лежит на продолжении стороны
за точку
Тогда
— центр вневписанной в
окружности, касающейся стороны
Следовательно,
— биссектриса. Но так как
также является и медианой, то
равнобедренный, следовательно,
- 2.
- Пусть
лежит на продолжении
за точку
Тогда
— тоска пересечения биссектрис треугольника
следовательно,
— биссектриса угла
Так как
также медиана в
то этот треугольник равнобедренный. Следовательно,
Это внешние углы четырехугольника при вершинах
и
Значит, равны и внутренние углы, то есть
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!