Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#37836

Решите уравнение sinx− sin15xcosx = 3.
                2

Подсказки к задаче

Подсказка 1!

1) Для начала можно попробовать попроверять немного значений, и понять, что выглядит наше выражение не очень реалистично. Попробуем теперь это доказать! Для этого здорово помогла бы оценка через сумму модулей...

Подсказка 2!

2) У нас получится |sin(x)| + |sin(15x)||cos|(x)| >= 3/2. Давайте воспользуемся свойством ограниченности функций и совершим еще одну оценку! Наша цель - доказать, что изначальное уравнение не имеет решений.

Подсказка 3!

3) Мы получим следствие из изначального равенства. Противоречий пока не видно, хотя сумма модулей синуса и косинуса, равная 1,5 уже близка к проблемам. Так как оценивать сумму синуса и косинуса мы не очень хотим, давайте попробуем возвести эту оценку в квадрат. С квадратами в плане оценок дела обстоят получше)

Подсказка 4!

4) Отлично, теперь осталось совсем немного, воспользоваться известными нам оценками на квадраты и сами функции, и получить противоречие!

Показать ответ и решение

Заметим, что

sinx− sin15xcosx ≤|sinx − sin 15xcosx|≤|sinx|+ |sin 15x|⋅|cosx|≤|sinx|+ |cosx|

То есть 3≤ |sinx|+|cosx|
2 — следствие исходного равенства, возведём в квадрат и получим ещё одно следствие

9    2                  2                  5
4 ≤ sin x+ 2|sinx|⋅|cosx|+ cos x= 1+ |sin2x| =⇒  4 ≤ |sin2x|

Следствие решений не имеет, потому у исходного уравнения их быть не могло.

Ответ:

таких x  нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!