Тема АЛГЕБРА

Системы уравнений и неравенств .06 Сведение системы к квадратному

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра
Разделы подтемы Системы уравнений и неравенств
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#82780

Решите систему уравнений

{ (xy+ 3x− y − 3)|y− x− 9|=(x− 4)|xy+3x − y− 3|;
  √y-−-x+9-=y − 4.

Источники: Ломоносов - 2024, 11.3 (см. olymp.msu.ru)

Показать ответ и решение

Из второго уравнения следует, что y ≥ 4  , так как корень неотрицателен.

Пусть первое уравнение выполняется из-за того, что (xy+ 3x − y− 3)= 0  . Условие равносильно (x− 1)(y +3)= 0  . Решение y = −3  не подходит, а при x= 1  получаем:

                  ({
∘y+-8= y− 4  ⇐⇒    y ≥ 4,          ⇐⇒   y = 8
                  (y2− 9y+8 =0.

Пусть теперь (xy +3x− y− 3)⁄=0  , но (x− 4)= 0  , и (y − x − 9)= 0  . Тогда x= 4,y = 13  , но такой вариант не подходит под второе уравнение.

При остальных x,y  система равносильна системе:

(                            (
|||{ (x − 1)(y +3)(x − 4)> 0,      |||{(x− 1)(y+ 3)(x− 4)>0,
  y− x− 9= ±(x − 4),     ⇐⇒    y =13 или y = 2x+ 5,
|||( √y−-x+-9= y− 4             |||(√y-−-x+-9= y− 4

При y = 13  решением будет x= −59  , при y = 2x+ 5  получим уравнение:

√-----             ({ x≥ 0.5,
 x+ 14= 2x +1  ⇐ ⇒  (  2
                     4x +3x− 13= 0

Откуда    −3+√217-
x=    8  , тогда    17+√217-
y =   4  . Последняя пара не удовлетворяет условию (x − 1)(y +3)(x − 4)> 0  .

Ответ:

 (1,8),(−59,13)

Ошибка.
Попробуйте повторить позже

Задача 2#68031

Действительные числа x  и y  таковы, что

   5      3
x +y = y+ x = 23

Какое наибольшее значение может принимать произведение xy?

Источники: Турнир Ломоносова-2023, 11.1 (см. turlom.olimpiada.ru)

Показать ответ и решение

При условии того, что обе переменные не равны нулю, имеем:

{ xy+ 5= 23y
  xy+ 3= 23x.

Значит:

(xy+ 5)(xy+ 3) =232xy

Пусть t=xy :

t2+ 8t+15 =529t

t2− 521t+15= 0

Тогда получим:

       √ ------
t= 521±--271-381.
        2

Докажем, что наибольший корень реализуется. Действительно, из обоих уравнений получаем x,y,  подставляя xy.  Они подходят, так как наши преобразования были равносильны с учетом того, что x⁄= 0,y ⁄=0.

Ответ:

 521+√271381
     2

Ошибка.
Попробуйте повторить позже

Задача 3#31703

Решите систему уравнений:

{ x2− 3xy +2y2+ 5x − 9y+ 4= 0;
  x2− y2 − 5= 0.
Показать ответ и решение

Решим первое уравнение как квадратное относительно x  :

         2     2          2
D =(5− 3y) − 4(2y − 9y+4)= y + 6y +9

2x= 3y− 5 ±(y+ 3)

Подставим во второе уравнение x= 2y− 1  :

3y2− 4y− 4= 0

3y = 2±√4-+3-⋅4

y = 2±-4
     3

x= 1±-8
     3

Подставим во второе уравнение x= y− 4  :

−8y+ 11 =0

y = 11
    8

   11−-32
x=    8

Значит, у системы есть три решения: y = 2  и x= 3  ,     2
y = −3  и      7
x= − 3  ,    11
y = 8  и     21
x= −8  .

Ответ:

 (3;2),(− 7;− 2),(− 21;11)
       3  3    8 8

Ошибка.
Попробуйте повторить позже

Задача 4#70774

Решите систему уравнений

({ 3y− 2x= √3xy−-2x− 3y+-2

( 3x2+ 3y2 − 6x− 4y = 4

Источники: Физтех-2022, 11.2 (см. olymp.mipt.ru)

Показать ответ и решение

Первое уравнение при условии 3y− 2x ≥0  равносильно уравнению

       2
(3y− 2x) = 3xy− 2x − 3y+ 2

  2             2
4x +(2− 15y)x+ (9y + 3y− 2)= 0

Решая это уравнение как квадратное относительно переменной x,  имеем

                                    ⌊ x= 3y − 1
D =(2− 15y)2− 16(9y2+3y− 2)= (9y− 6)2 ⇒ ⌈    3   1
                                      x= 4y+ 2

Подставляем во второе уравнение исходной системы.

Если x= 3y− 1,  то

              ⌊        √--
              | y = 4+6-10
6y2− 8y +1= 0⇔ |⌈     4− √10
                y = --6---

Получаем две пары      √--     √--
y = 4+610,x = 2+210  и      √--      √--
y = 4−610,x= 2−210.

Если x= 34y+ 12,  то

              ⌊
  2             y =2
3y − 4y− 4= 0⇔ ⌈ y =− 2
                     3

Также имеем две пары y =2,x= 2  и y = − 2,x= 0.
    3

Из четырёх найденных пар чисел неравенству 3y ≥2x  удовлетворяют только две из них: (2;2),(2−√10;4−-√10) .
       2     6

Ответ:

 (2;2),(2−-√10;4−√10)
        2    6

Ошибка.
Попробуйте повторить позже

Задача 5#71525

Решите в действительных числах систему уравнений:

(| a+ c= 4
|||{ ac+ b+d =6
|
|||( ad+ bc =5
  bd= 2

Источники: ОММО-2022, номер 5 (см. olympiads.mccme.ru)

Показать ответ и решение

Пусть x2+ ax+ b  и x2 +cx+ d  — два квадратичных многочлена, коэффициенты которых — искомые корни данной системы. Тогда

( 2      )( 2      )   4       3           2
 x + ax+ b x + cx +d = x + (a +c)x  +(ac+b+ d)x  +(ad+bc)x +bd=

   4   3    2
= x +4x + 6x +5x+ 2

Из делителей свободного коэффициента 2  находим корни − 1  и − 2  , тогда можно поделить многочлен на (x+ 1)(x+ 2)=(x2+ 3x +2):

x4+ 4x3 +6x2+ 5x+2 =(x2+ 3x+ 2)(x2+ x+ 1),

что возможно только в двух случаях:

{                        {
  x2+ax +b= x2+ 3x+2        x2 +ax+ b= x2+ x+1
  x2+cx+ d= x2+ x+ 1  или   x2 +cx+ d= x2+3x +2

тогда в первом случае получаем a= 3,b= 2,c= 1,d =1,  а во втором — a= 1,b=1,  c= 3,d= 2.

Ответ:

 (3,2,1,1),(1,1,3,2)

Ошибка.
Попробуйте повторить позже

Задача 6#95399

Решите систему уравнений

{  x4+ 7x2y+ 2y3 = 0
   4x2+ 27xy+ 2y3 =0

Источники: Межвед - 2021, 11.5 (см. v-olymp.ru)

Показать ответ и решение

Рассмотрим функцию f(t)= t2+ 7ty+ 2y3
         2  . При условии выполнения равенств исходной системы её корнями будут t = x2
 1  и t =2x
2  . Если t1 = t2  , то x1 =0,x2 = 2  . Отсюда найдём y1 = 0,y2 = −1  . Если t1 ⁄= t2  , то по теореме Виета

        3         3   3
t1⋅t2 =2y   ⇐⇒   2x = 2y   ⇐ ⇒  x =y.

Подставляя в исходную систему, найдём третье решение (− 11;− 11).
  2   2

Ответ:

 (0,0),(2,− 1),(− 11,− 11)
            2   2

Ошибка.
Попробуйте повторить позже

Задача 7#31185

Решите систему

({ ∘ x- ∘-y  -7-
   √y +  x = √xy√ +-1;
( x xy+ 78= −y xy.

Источники: ПВГ-2020

Показать ответ и решение

Область определения системы распадается на две подобласти: 1) x,y > 0  и 2) x,y < 0  .

При умножении первого уравнения на xy ⁄= 0  , получаем

     ∘ x-      ∘ y-   √--
x⋅(y⋅  y)+ y⋅(x⋅  x)= 7 xy+ xy

В подобласти (1)  верно     ∘--    √--
y =  y2,x =  x2  , то есть мы можем занести под корень и сократить:

{  √--   √--   √--
  x xy+ y-xy =7 xy +xy
       x√xy+ 78= −y√xy

откуда следует, что число    √ --
t=   xy  удовлетворяет квадратному уравнению t2 +7t+ 78 =0  , которое решение не имеет.

В подобласти (2)  же из-за того, что     ∘ --    √ --
y = − y2,x= −  x2  при занесении под корень в левой части появляются минусы перед корнями:

{   √ --  √ --  √ --
  − x xy−√y-xy = 7 xy+√ xy;
        x  xy +78= −y  xy,

откуда следует, что число    √ --
t =  xy  удовлетворяет квадратному уравнению  2
t +7t− 78 =0  , решениями которого являются t1 = −13,t2 = 6  .

Так как t> 0  , то с учетом исходной системы получаем x⋅y =36,x+y = −13.  В итоге имеем две пары решений (− 9;−4),(−4;−9)  .

Ответ:

 (−9;−4),(−4;−9)

Ошибка.
Попробуйте повторить позже

Задача 8#102368

Решите систему уравнений

{ 3x − y− 3xy = −1;
  9x2y2+ 9x2+ y2− 6xy =13.
Показать ответ и решение

{     (1− y)(3x+1)= 0
   9x2y2+ 9x2+y2− 6xy = 13

⌊ {        1− y = 0
||   9x2y2+9x2+ y2− 6xy = 13
||⌈ {        3x+1 =0
    9x2y2+9x2+ y2− 6xy = 13

Решим каждую систему совокупности:

{                            {
         y =1                            x =− 13
   9x2 +9x2+ 1− 6x =13   или     9(− 13)2y2+ 9(− 13)2+ y2+ 6y13 = 13

(                   (
|{  [ y = 1          |{ [x =− 13
|    x= − 23    или  |   y =3
(    x = 1          (   y =2
Ответ:

(− 2;1),(1;1),(− 1;−3),(− 1;2)
  3           3        3

Ошибка.
Попробуйте повторить позже

Задача 9#51846

Решить систему уравнений

{ (x− 2)(x +3)= y(y − 5);
  log (2 − y)=-x.
    x       y2
Показать ответ и решение

Первое уравнение можно записать так:

 2   2
x  − y + x+ 5y − 6 =0 ⇐⇒  (x+ y− 2)(x− y +3)= 0, откуда

x =y − 3 (1)

x =2 − y (2)

Из второго уравнения системы следует, что

2− y > 0,x> 0,x⁄= 1 (3)

a) Если справедливо равенство (2), то из второго уравнения системы находим x =y2,  откуда, используя равенство (2), получаем 2− y = y2  или (y− 1)(y+ 2)=0.  Пусть y =1,  тогда x= 1,  и не выполняются условия (3). Пусть y = −2,  тогда x= 4  и (4;−2)  — peшение данной системы.

б) Если справедливо равенство (1) и условия (3), то y > 3  и y < 2,  что невозможно.

Ответ:

 (4;− 2)

Рулетка
Вы можете получить скидку в рулетке!