Разложение на множители, основная теорема арифметики
Ошибка.
Попробуйте повторить позже
Докажите, что произведение трех последовательных натуральных чисел не может быть степенью (выше первой) натурального числа.
Подсказка 1
Попробуем идти от противного. Пусть наши числа — это n-1, n и n+1. Тогда нас спрашивают о произведении чисел n и n² - 1, которые взаимно просты. Что тогда можно сказать об этих числах, если их произведение является натуральной степенью выше 2?
Подсказка 2
Верно, n и n^2-1 сами являются точными степенями, причем с одним и тем же показателем b двух взаимно простых чисел x и y. Можно ли найти связь между x и y?
Подсказка 3
Верно! Так как n = x^b и n² - 1 = y^b, получаем x^(2b) - y^b = 1. А можно ли от степеней 2b и b перейти к более простым степеням?
Подсказка 4
Можно! Нетрудно видеть, что x² - y делит левую часть приведенного выше уравнения. А тогда x² - y делит и число 1, то есть равно 1. Таким образом, x² = y + 1. Имеет ли тогда решения уравнение, полученное в предыдущей подсказке?
Подсказка 5
Верно, не имеет! Можно подставить x² = y+1 и заметить, что (y+1)² - y² = 2y + 1 > 1. А можно ли доказать, что при b > 2 разность степеней чисел y+1 и y будет больше?
Предположим противное. Пусть последовательные числа имеют вид (). Их произведение равно Заметим, что числа и взаимно просты. Следовательно, если их произведение равно где , то Таким образом, Нетрудно видеть, что делится на а значит это число делит единицу. То есть Подставим вместо в уравнение и получим
Ясно, что для натурального и справедливо неравенство поскольку оно сводится к неравенству которое очевидно верное. Таким образом, при Если же то откуда но тогда число не натуральное, пришли к противоречию.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!