Тема . Уравнения без логарифмов и тригонометрии

Уравнения с модулем

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#34757

Решите уравнение

              | 22    2     2       |  |xy|
|1− x− y − xy|+ |2x y − 2x y− 2xy + 2xy− 9|+ xy = −1.

Источники: ПВГ-2012, 11.5 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Слева модули, а справа (-1) –> намёк на оценку! Вот только одно слагаемое в левой части выбивается! Однако взгляните на него повнимательнее: может мы точно знаем, какие оно может принимать значения?

Подсказка 2

Если это выражение равно 1, то оценка даст нам явное противоречие, а если (-1), то красивую системку! Только не забудьте, что эти значения наше выражение принимает при определённых условиях – прикрепите их к системе. Остаётся решить системку! Возможно, уравнения могут вас пугать, но вот как работать с выражением 1-x-y-xy вы должны помнить ещё с вебов по тождественным преобразованиям!

Подсказка 3

Раскладываем на множители и замечаем, что сами x и y выразить трудновато, но зато легко можно найти значение xy. А зная его, и значение x+y легко ищется! А уже система из суммы и произведения легко решается либо обычной подстановкой, либо сведением к квадратному уравнению (вспомните теорему Виета)

Показать ответ и решение

Заметим, что |xy|= ±1
xy  , откуда левая часть не меньше − 1  , равенство достигается тогда и только тогда, когда

(| 1 − x − y− xy = 0                 (| (x− 1)(y− 1)=2xy
{ 2x2y2− 2x2y− 2xy2+2xy− 9= 0   ⇐⇒   { 2xy(x− 1)(y − 1)= 9
|(                                   |(
  xy <0                               xy <0

Из первых двух уравнений следует, что (2xy)2 =9  , а с учётом третьего неравенства получаем xy = − 3
     2  . Для решения системы осталось подставить это в первое уравнение, потому что второе и третье условия мы уже учли

{ 1− x− y+ 3= 0        { x+ y = 5
  xy = − 3 2      ⇐⇒     xy = − 32
       2                      2

По обратной теореме Виета если решения системы есть, то числа x,y  будут корнями уравнения t2− 52t− 32 = 0 ⇐⇒   t=− 12 или t=3  . Осталось не забыть, что система симметрична (x;y)<− > (y;x)  , и записать обе пары в ответ.

Ответ:

 (3;− 1),(− 1;3)
    2   2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!