Тема . Уравнения без логарифмов и тригонометрии

Уравнения с модулями и корнями (радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67148

Решите уравнение

    ||x3||− |5x|
√2x2− 4x−-1−-|x|+-2 = 0

Источники: Вступительные в МГУ, 1995

Подсказки к задаче

Подсказка 1

Давайте просто запишем наше уравнение как системку: числитель = 0, знаменатель не равен 0, и одз из-за корня) Думаю, решить уравнение числитель = 0 не сложно)

Подсказка 2

Остаётся подставить получившиеся корни из первого уравнения в оставшиеся условия из системы и проверить, подходят они или нет)

Показать ответ и решение

Для равенства дроби нулю нужно, чтобы числитель равнялся нулю, а знаменатель при этом не обращался в ноль. Исходное уравнение равносильно следующей системе:

(   3                     (     2
|{  |x√-|−2|5x|=-0-          ⇔ |{  |x√|(x2−-5)-=0-
|(   22x − 4x− 1− |x|+ 2⁄= 0  |(   22x − 4x− 1⁄= |x|− 2
   2x − 4x− 1≥ 0              2x − 4x− 1≥ 0

Из первого уравнения получаем:

[ x= 0
  x= ±√5

x= 0  не подходит, так как 2⋅0− 4 ⋅0 − 1< 0

x= √5  не подходит, так как                 ∘ --------
∘2-⋅5−-4⋅√5−-1=   (√5-− 2)2 = √5− 2

x= −√5  удовлетворяет всем условиям.

Ответ:

− √5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!