Тема . Уравнения без логарифмов и тригонометрии

Уравнения с модулями и корнями (радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#77219

Решите уравнение

||   ∘ ---2||  ∘----2
|x+ x  1− x |= 1 +x .

Источники: ПВГ 2015

Подсказки к задаче

Подсказка 1

Посмотрите внимательно на уравнение: есть в нем какие-то элементы, на которые стоит обратить внимание?

Подсказка 2

Что особенного в модуле и x²? Может быть, они смогут как-то сократить количество х, которые нужно рассмотреть?

Подсказка 3

Какие значения х достаточно рассмотреть, если у нас есть четные функции слева и справа?

Подсказка 4

Раз решаем уравнение, то что стоит записать?

Подсказка 5

Так как взяли для рассмотрения только x≥0, то что можно сделать на ОДЗ?

Подсказка 6

После раскрытия модуля останутся два выражения с корнем. Что обычно делаем в таком случае?

Подсказка 7

Да, стоит возвести в квадрат. Но что можно сделать, чтобы эта операция прошла проще, чем если возводить части уравнения в текущем виде?

Подсказка 8

Перенесли +х вправо, чтобы упростить конструкцию, и возвели в квадрат. Но корень все еще остался. Что можно сделать, чтобы избавиться от него окончательно?

Подсказка 9

Да, снова оставить корень с одной стороны, а все остальное перенести в другую. Можно бы было, конечно, после этого честно раскрывать квадраты, но решать уравнения четвертой степени явно не хочется. Может быть, заметите что-то общее между левой и правой частью?

Подсказка 10

Может быть, в выражении справа можно сделать какое-то преобразование, чтобы вышло похоже на выражение слева? И стоит вспомнить, что сумму трех элементов можно представить, как сумму двух.

Подсказка 11

x⁴ + x² = x²(x² + 1). Можно ли с помощью этого как-то объединить левую и правую часть в одно выражение?

Подсказка 12

(a+1)² - 4a = 0. Ничего не напоминает?

Подсказка 13

Выразили как квадрат разности, и теперь осталось простое биквадратное уравнение.

Подсказка 14

Не забудьте, что мы рассматривали только часть допустимых х!

Показать ответ и решение

Первое решение.

Поскольку выражение слева и справа — чётные функции, то достаточно рассмотреть случай x ≥0.

Тогда на ОДЗ x∈ [0;1]  все преобразования равносильны. А при x∈∕ [0;1]  решений нет.

 ∘ -----    ∘ -----
x  1− x2+x =  1+ x2

 ∘ ----2  ∘----2
x  1− x =  1+ x − x

x2− x4 = 1+2x2− 2x∘1+-x2

2x∘1-+-x2-=x4+ x2+ 1

4x2(1+ x2)=(x2(x2+ 1)+ 1)2

(x2(x2+ 1) − 1)2 = 0

x4+x2− 1= 0.

Решив квадратное относительно  2
x  уравнение, получим    ∘ √5−1-
x=    2  .

Учитывая чётность всех выражений в исходном уравнении      ∘√----
x =±  --5−21.

Второе решение.

Используем неравенство Коши–Буняковского(скалярное произведение двух векторов на плоскости не превосходит произведения их длин) для векторов на плоскости вида √ -----
( 1− x2,x)  и ± (x,1)  . Получим

±(x∘1-− x2+ x)≤ 1⋅∘1+-x2

Равенство достигается, если вектора пропорциональны(косинус угла между ними равен 1  ), то есть

√-----
-1−-x2= x
  x     1

∘1-−-x2 = x2

    √-
x2 =-5−-1
      2
Ответ:

±∘ √5−1-
     2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!