Тема . Классические неравенства

Оценки в классических неравенствах

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#129163

Положительные числа x,y,z  таковы, что

(x+ y)(y+ z)(z+ x) =xy+ yz+ zx.

Докажите, что (xy+ yz +zx)2 >xyz.

Подсказки к задаче

Подсказка 1:

Исходя из равенства в условии, хочется получить какие-то неравенства, в левой части которых находится произведение каких-то из выражений x + y, y + z, x + z, а в правой — x, y, z или произведение каких-то из них. И потом уже из этих неравенств получать требуемое неравенство.

Подсказка 2:

Получать эти неравенства также можно из равенства, данного в условии. Попробуйте как-нибудь грубо оценить выражение xy + yz + zx снизу.

Подсказка 3:

Например, можно так: xy + yz + zx > xy + yz = y(x + z).

Показать доказательство

Заметим, что

(x+ y)(y+ z)(z+ x)=xy +yz+ zx> xy+yz =y(x+ z),

откуда

(x+ y)(y+z)> y

Аналогично получаем

(y+ z)(z+x)> z

(z+x)(x+y)> x

Перемножая три полученных неравенства, получаем требуемое.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!