Тема . Классические неравенства

Оценки в классических неравенствах

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#69406

Известно, что a,b,c> 0  и a+ b+c= 1.  Докажите, что

-----a-----  -----b----- -----c-----  3
3a2+ b2+ 2ca + 3b2+ c2+ 2ab +3c2+ a2+2bc ≤ 2

Источники: Бельчонок-2023, 11.3 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Если мы бегло посмотрим на условие, то сразу поймем, что приводить к общему знаменателю здесь это очень плохой вариант. В таких случаях бывает полезно оценить каждое слагаемое по отдельности. К тому же мы видим, что они достаточно похожи, возможно, придумав, как оценить одну дробь, мы сразу поймем, как оценить остальные.

Подсказка 2

Давайте внимательно посмотрим на первую дробь. Понятно, что с числителем тут ничего не сделаешь. А вот в знаменателе у нас есть тут целых два квадрата, стоит попытаться выделить полный квадрат. Подумайте, как нам может в этом помочь условие, что a+b+c=1.

Подсказка 3

Давайте в выражении 3a²+b²+2ac представим 3a² как a² + 2a², тогда можно будет вынести общий множитель из 2ac и 2a². Что можно подставить вместо a+c и как при этом будет выглядеть оценка на 3a²+b²+2ac?

Подсказка 4

Если вместо (a+c) подставить (1-b), то после выделения полного квадрата станет понятно, что 3a²+b²+2ac >= 2a. Используя это знание, оцените всю дробь целиком, остальные дроби суммы и саму сумму.

Показать доказательство

Так как a+ c= 1− b,  то 3a2+ b2 +2ca= a2+b2+ 2a(1− b)=2a+ (a− b)2 ≥ 2a.  Следовательно,

----a------ 1
3a2+ b2+ 2ca ≤2

Аналогично

    b       1        c       1
3b2+-c2+2ab ≤ 2; 3c2-+a2+-2bc-≤ 2

Сложив три полученных неравенства, получим

-----a-----+ -----b-----+-----c-----≤ 1+ 1 + 1= 3
3a2+ b2+ 2ca  3b2 +c2+ 2ab  3c2+ a2+2bc  2  2   2  2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!