Оценки в классических неравенствах
Ошибка.
Попробуйте повторить позже
Доказать, что для любых положительных чисел () выполняется неравенство
Подсказка 1
Требуется доказать неравенство от n переменных, логично это делать по индукции. Сперва разберёмся с базой n=4. У нас имеется четыре дроби, причём две пары с равными знаменателями. Итого, получается сумма двух обратных чисел, а она больше либо равна двум, например, по неравенству о средних.
Подсказка 2
Теперь надо подумать, что вообще изменяется при шаге индукции. В самом деле, две дроби заменяются на три, притом вообще не очень понятно, какая из сумм больше. Что могло бы помочь их сравнить?
Подсказка 3
Нужно вспомнить о том, что при циклическом сдвиге переменных выражение не изменяется, тогда можем считать, что наша последняя переменная минимальная из всех. Теперь уже сравнить суммы двух и трёх дробей несложно, а значит, мы сможем завершить шаг индукции.
Докажем неравенство индукцией по
База:
Сумма обратных положительных чисел по неравенству о средних между средним арифметическим и геометрическим больше либо равна двух.
Предположение индукции: пусть для утверждение верно.
Переход: докажем для Пусть имеется выражение для При циклическом сдвиге выражение не меняется, потому без ограничения общности можем считать, что минимальное из чисел. Тогда выражение для набора чисел отличается от выражения с иксами на
В силу и первая дробь больше либо равна третьей, а вторая больше либо равна четвёртой. Получается выражение с иксами больше либо равно выражению с игреками, к которому, в свою очередь, можно применить предположение индукции. Получаем, что и выражение с иксами больше либо равно двух, переход доказан.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!