Тема . Классические неравенства

Оценки в классических неравенствах

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#91440

Для положительных чисел a,b,c  и d  докажите неравенство

--a---- ---b---  ---c---  ---d---
a+ b+c +b+ c+ d + c+ d+ a + d+ a+b > 1
Подсказки к задаче

Подсказка 1

Заметим, что если сложить все числители, то получится a + b + c + d. Как можно огрубить знаменатели, чтобы дроби сложились и все сократилось?

Показать доказательство

Увеличим каждый из знаменателей до a+b +c+ d,  это именно увеличения, ведь все числа положительны. Получаем, что левая часть больше суммы дробей с одинаковым числителем, равной 1.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!