Теорема Виета для квадратных трёхчленов
Ошибка.
Попробуйте повторить позже
Даны квадратные трехчлены
, , и
Пусть разности их корней равны соответственно и , и при этом
Найдите соотношение
(значения не заданы)
Источники:
Подсказка 1
Хм, а давайте подумаем, чему равна разность между корнями любого квадратного трёхчлена.
Подсказка 2
Да, она равна отношению корня из дискриминанта к старшему коэффициенту! Попробуйте выписать разность корней для каждого из уравнений.
Подсказка 3
А теперь, давайте посмотрим на дробь, значение которой надо найти и просто подставим найденные разности в это выражение!
Первое решение.
Пусть — квадратный трёхчлен с неотрицательным дискриминантом . Тогда его корни определяются формулой , поэтому . Применяя эту формулу четыре раза, получаем
Отсюда следует, что , . Сократить на можно, поскольку по условию. Значит, искомое отношение равно .
Второе решение.
Если у нас есть квадратное уравнение , у которого корня, то по теореме Виета и . Тогда . Применим это к нашей задаче.
Условие, что дает нам, что или .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!