Теорема о промежуточном значении
Ошибка.
Попробуйте повторить позже
Известно, что
Докажите, что
Источники:
Подсказка 1
Давайте внимательно посмотрим на неравенство, которое нужно доказать. Где такое выражение чаще всего встречается? Попробуйте подумать в этом направлении.
Подсказка 2
Верно, это дискриминант квадратного трёхчлена с нужными коэффициентами. Тогда давайте рассмотрим трёхчлен ax^2 + bx +c. Как теперь можно переформулировать нашу задачу?
Подсказка 3
Ага, когда наше неравенство будет выполняться, многочлен будет иметь два корня. Тогда нужно просто проанализировать знаки трёхчлена в хороших точках. Какие это могут быть точки, учитывая неравенства, данные по условию?
Подсказка 4
Верно, попробуйте подставить точки 3 и -3 и посмотреть на знаки трёхчлена. Но не забудьте ещё проверить a=0, потому что в этом случае у вас не квадратный трёхчлен. В таком решении это важно.
Первое решение.
Чтобы доказать хочется доказать Преобразуем это неравенство:
Верно, поэтому было верным и
Значит,
Второе решение.
Нам нужно доказать, что а это очень напоминает дискриминант, поэтому давайте придумаем квадратный трёхчлен с таким дискриминантом и докажем, что он имеет 2 корня. Очевидно, подходит Всегда ли мы можем рассматривать его дискриминант? Нет, в случае никакого дискриминанта нет, поэтому его надо рассмотреть отдельно — благо, тут всё просто и понятно, а значит,
Теперь рассмотрим случай, когда В неравенстве из условия было поэтому давайте попробуем подставить 3 и -3.
То есть квадратный трёхчлен принимает положительные и отрицательные значения, а значит, он имеет 2 корня! И его
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!