Тема . Последовательности и прогрессии

Рекуррентные соотношения

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела последовательности и прогрессии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#35437

Можно ли из последовательности 1,1,1,...
  23  выбрать (сохраняя порядок) сто чисел из которых каждое, начиная с третьего, равно разности двух предыдущих (то есть ak =ak−2− ak−1  )?

Показать ответ и решение

Такую подпоследовательность можно построить, например, следующим образом. Напишем последовательность из ста чисел 1,2,3,5,8,13,...,  в которой каждое число, начиная с третьего, есть сумма двух предыдущих (эта последовательность называется последовательностью Фибоначчи). Разделим все числа на их наименьшее общее кратное и запишем их в обратном порядке. Все дроби сокращаются, и получаются числа из ряда  1 1
1,2,3,...,  записанные в порядке убывания. При этом каждое число, начиная с третьего, равно разности двух предыдущих, что и требуется.

Ответ: Можно

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!