Рекуррентные соотношения
Ошибка.
Попробуйте повторить позже
Докажите, что все члены последовательности
являются целыми числами.
Заметим, что все члены последовательности неотрицательны, и
Поэтому все члены последовательности различны. Перенеся в левую часть и возведя полученное равенство в квадрат, получаем
Кроме того, также выполняется и равенство
(получаемое уменьшением индексов на ). Это означает, что и являются корнями уравнения Тогда по теореме Виета получаем т. е. Отсюда в силу того, что первые два члена последовательности — целые числа, следует, что все вычисляемые с помощью полученной формулы, т. е. — целые числа.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!