Тема . Квадратные трёхчлены

Дискриминант и корни квадратных трёхчленов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела квадратные трёхчлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71901

Известно, что квадратный трёхчлен

      2
(b+c)x +(a+ c)x+ (a+ b)

не имеет корней. Докажите, что 4ac− b2 ≤ 3a(a +b+ c).

Источники: СпбОШ - 2018, задача 11.4(см. www.pdmi.ras.ru)

Показать доказательство

Обозначим через P (x)  квадратный трёхчлен из условия задачи:

           2
P(x)= (b+ c)x + (a+c)x+ (a+ b).

Если одновременно поменять знаки у всех коэффициентов трёхчлена P(x),  то у него по-прежнему не будет корней, а требуемое неравенство не изменится. Поэтому можно считать, что b+c> 0  и P(x)> 0  при всех x.

Решение 1.

Поскольку P(x)  не имеет корней, его дискриминант отрицателен:

     2
(a +c) − 4(a+ b)(b+c)< 0.

После деления на 4  и приведения подобных получим неравенство

 2      a2  c2  ac
b + ab> 4 + 4 − 2 − bc. (∗)

Нам требуется доказать, что       2
4ac− b ≥3a(a+ b+c),  или, что то же самое,   2       2
6a + 6ab+ 2b ≤2ac.  Заменим в этом неравенстве  2
b + ab  на правую часть неравенства (*), тем самым уменьшив левую часть. Останется доказать неравенство

  2       2  a2  c2   ac
6a + 5ab+ b + 4-+ 4-− 2-− bc≥ 2ac.

После приведения подобных оно примет вид

(  )2              (     )2      (     )
 5a  + 5ab+b2+ c2=  5a+ b  + c2≥  5a+ b c,
 2             4     2       4     2

и теперь оно очевидно в силу неравенства о средних.

Решение 2.

Положим

u= b+c,v = c+a,w =a +b.

Тогда 1(v+ w − u),b= 1(u− v+ w),c = 1(u+ v− w).
2            2            2  По условию квадратный трёхчлен ux2+vx+ w  не имеет корней. Тогда его дискриминант v2− 4uw  отрицателен, значит, 4uw> v2.  Перепишем в новых обозначениях неравенство, которое нужно доказать:

                   2
0≤ 3a(a+ b+c)− 4ac+ b =

  v-+w-− u u+-v+-w   v+-w-− u u+-v−-w  (u-− v+-w )2
=3    2   ⋅   2    − 4  2    ⋅   2   +     2      =

   2         2
= u-+-2vw+-4w-−-3uw-−-uv
            2

Это равносильно неравенству (u− 2w)2+ uw ≥v(u− 2w),  и в таком виде оно очевидно, поскольку

(u− 2w)2 +uw > (u− 2w)2+ v2≥ 2(u− 2w)v= v(u− 2w ).
                       4          2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!