Остатки и делимость по модулю степеней тройки
Ошибка.
Попробуйте повторить позже
Какую наименьшую сумму могут иметь девять последовательных натуральных чисел, если эта сумма оканчивается на ?
Подсказка 1
Сначала стоит как-нибудь обозначить эти девять последовательных чисел, удобно сделать это симметрично, т.е. взять a-4 как первое число, тогда последнее будет a+4. Что можно сказать про сумму этих чисел? Что это означает для десятичной записи этой суммы?
Подсказка 2
Сумма равна 9a, т.е. делится на 9. Но тогда из признака делимости на 9 можно оценить снизу сумму оставшихся цифр. Какое тогда может быть минимальное число?
Подсказка 3
Сумма оставшихся цифр хотя бы 8 ⇒ минимальное число 81234567. Отсюда легко находится a, из которого следует пример подходящих девяти чисел.
Давайте введём симметричные обозначения для девяти последовательных чисел: пусть первое число равно , тогда сумма
Заметим, что делится на , и значит, сумма цифр числа
должна делиться на . Тогда сумма оставшихся цифр хотя бы , и поэтому минимальное число . Для него подходит (досчитывать на олимпиаде необязательно, но нужно пояснить, почему это число целое и почему подходит).
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!