Остатки и делимость по модулю 11
Ошибка.
Попробуйте повторить позже
Дано натуральное число, кратное Между его цифрами вставили два нуля подряд. Докажите, что полученное число тоже делится на
Первое решение.
После разложения на взаимнопростые множители нужно использовать критерии делимости для старого и нового (после
вставки двух нулей) чисел.
) Сумма цифр при вставке двух нулей не меняется, поэтому не меняется и делимость на
) Знакопеременная сумма цифр также не меняется, поэтому не меняется и делимость на
(или можно сказать, что суммы цифр на
чётных и нечётных местах остались равны).
) Последняя цифра не изменилась, так как нули вставляют между цифрами, поэтому не изменилась и делимость на
Второе решение.
Обозначим число до вставленных цифр, у которого следующие цифры сделаем нулями, через (сразу заметим, что
делится на
,
потому что у этого числа на конце нули), после — через
Тогда исходное число это а новое число равно
Из замеченной делимости на следует делимость числа
на
а
это исходное число, которое тоже делится на
по условию.
В итоге и полученная сумма делится на
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!