Тема . Признаки делимости и равноостаточности

Остатки и делимость по модулю 11

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела признаки делимости и равноостаточности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#35424

При каких x  и y  число xxyy  является квадратом натурального числа?

Показать ответ и решение

Перепишем наше число как

1000x+ 100x +10y+ y = 11⋅(100x+ y)

Предположим, что это число является квадратом натурального числа. Тогда 100x+ y  делится на 11. Поэтому и x+ y  делится на 11. То есть нам осталось проверить для каждого из чисел 209,308,407,...,902  является ли оно квадратом натурального числа, умноженного на 11. Легко видеть, что нам подходит только число 704, откуда x =7  , y = 4  .

Ответ: x =7 , y = 4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!