Базовый аппарат сравнений по модулю
Ошибка.
Попробуйте повторить позже
Найдите остаток от деления числа на 9.
Как решать подобные задачи? Рассмотрим, какие остатки дают первые несколько степеней.
Легко видеть, что следующая степень снова сравнима с 2 по модулю 9. Итак, впервые некоторый остаток повторился. На самом деле после этого все остатки зацикливаются, и после 2 снова будет 4, 8, 7, 5, 1, 2, и т. д. Почему так происходит? Дело в том, что следующий остаток однозначно определяется предыдущим. Значит, если ранее после остатка 2 шел остаток 4, то и сейчас после 2 мы получим остаток 4.
Тем самым мы получили цикл остатков: 2, 4, 8, 7, 5, 1. Поэтому достаточно посчитать, какой номер будет у числа 1000 в данном цикле. А для этого достаточно заметить, что, раз цикл имеет длину 6, то все зависит от того, какой остаток дает число 1000 при делении на 6. Нетрудно посчитать, что этот остаток равен 4. Значит, число 1000 будет четвертым по номеру в этом цикле, таким образом, дает остаток 7 при делении на 9.
Ответ
Искомый остаток равен 7.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!