Тема . Остатки и сравнения по модулю

Малая теорема Ферма

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела остатки и сравнения по модулю
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68879

Натуральные числа вида 11 ...1
◟ ◝◜n-◞  (десятичная запись состоит из n  единиц) будем обозначать R .
 n  Докажите, что существует такое натуральное число k,  что Rn  делится на 41 тогда и только тогда, когда n  делится на k.

Источники: Иннополис-2023, 10-12 (см. dovuz.innopolis.university)

Подсказки к задаче

Подсказка 1

Сложно анализировать число только из единиц, т.к. сложно разобрать даже его делители...тогда было бы по хорошему его как-то преобразовать в более приятный вид. И подумаем над вопросом: "А откуда тут вообще 41? Почему не 42, например?"

Подсказка 2

Число, состоящее из единиц, можно записать как (10^n - 1)/9. А использовать 41 хочется только как простое число... Выходит, что (10^n - 1)/9 должно делиться на 41. Когда это возможно?

Подсказка 3

Когда 10^n - 1 делится на 41. Хмм, 41 простое... Какая известная теорема может помочь нам в нахождении хотя бы одного n, удовлетворяющему предыдущему предложению?

Подсказка 4

Малая теорема Ферма утверждает, что при n = 40 10^40 - 1 делится на 41. Теперь хочется как-то найти k из условия... а на что должно делиться n, чтобы 10^n - 1 делилось на 41? Мы не можем найти все такие случаи, но может попробовать найти хотя бы одного такое k и доказать, что утверждение работает в обе стороны.

Подсказка 5

Рассмотрим все такие d, что 10^d - 1 делится на 41 и выберем среди них наименьшее m. Докажем, что если n делится на m, то 10^n - 1 делится на 10^m - 1, а, значит, и на 41. Если это получится, то у нас найдено k, но условие "тогда и только тогда" пока не доказано. Теперь попробуем доказать, что если 10^n - 1 кратно 41, то n кратно m.

Подсказка 6

Мы взяли m наименьшим, т.к. обычно это помогает в поиске противоречий. Для того чтобы доказать утверждение из подсказки 5, попробуем найти НОД(10^n - 1, 10^m - 1).

Подсказка 7

В процессе поиска c помощью алгоритма Евклида можно заметить, что у нас в конце концов появится 10^(НОД(m, n)) - 1. Предположим, что n не делится на m, тогда НОД(n, m) < m. Осталось лишь найти противоречие с тем, что m - наименьшее взятое число из набора.

Показать доказательство

Заметим, что

     10n−-1
Rn =   9

Так как числа 9  и 41  взаимно просты, то Rn  кратно 41  тогда и только тогда, когда  n
10  − 1  кратно 41.  Поскольку 41  — простое, согласно малой теореме Ферма

1040− 1 ... 41

Рассмотрим все натуральные d,  при которых 10d − 1  кратно 41;  наименьшее такое d  обозначим за m.

Если n  делится на m,  то

10n− 1= 10tm − 1= (10m − 1)(10(t− 1)m +10(t−2)m + ⋅⋅⋅+10m +1)

Значит,  n
10 − 1  делится на   m
10  − 1,  а значит, и на 41,  что и требовалось.

В обратную сторону: если   n
10 − 1  кратно 41,  то рассмотрим       n     m
НО Д(10 − 1,10  − 1).  Воспользуемся алгоритмом Евклида, т.е. свойством НОД

НО Д(a,b)= НОД(a− kb,b),где a,b,k∈ ℕ

Теперь

НОД(10n− 1,10m− 1)= НОД(10n− 1− 10n−m(10m− 1),10m− 1)

НОД(10n− 1− 10n+ 10n− m,10m − 1)= НО Д(10n−m − 1,10m− 1)

Повторяя эти действия, убеждаемся, что в конце получается число   НОД(n,m)
10       − 1.

Если n  не делится на m,  то

НОД(n,m)< m

Значит, m  — не минимальное натуральное число, при котором   m
10  − 1  кратно 41  — противоречие. Значит, n  кратно m,  что и требовалось доказать.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!