Тема . Уравнения в целых числах

Выбор модуля и перебор случаев в уравнениях над Z

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67142

Найдите все натуральные m  и n,  для которых выполняется равенство

        2
m!+ 12 =n
Подсказки к задаче

Подсказка 1

Когда в задачке на натуральные числа встречается квадрат, сразу нужно подумать, что будем работать с остатками по какому-то модулю. Например, почему хорошо с квадратами работать по модулю 3? Потому что остатки квадратов по модулю 3 это только 0 и 1. Здесь же выгодно поработать с модулем 5, ведь что примечательно будет в левой части, если m будет больше 4?

Подсказка 2

Верно, левая часть по модулю 5 будет равна двойке, а правая по модулю 5 сможет равняться двойке? Нет, а это значит, что m не больше 4. Остается только перебрать подходящие натуральные m и найти те, которые подходят :)

Показать ответ и решение

Заметим, что при m ≥5  в левой части m!  кратно пяти, так что вся левая часть даёт остаток 2  по модулю 5.

А какие остатки может давать квадрат натурального числа по этому модулю? Нетрудно убедиться, что только 0,1,4.  Поэтому для m ≥ 5  равенство невозможно.

Остаются m = 1,2,3,4.  Вручную совершая проверку, находим единственное решение n= 6,m = 4.

Ответ:

 m = 4,n = 6

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!