Тема . Уравнения в целых числах

Выбор модуля и перебор случаев в уравнениях над Z

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79757

Найдите все натуральные k  такие, что при каждом нечётном n> 100  число 20n +13n  делится на k.

Источники: Всеросс., 2013, РЭ, 11.7(см. olympiads.mccme.ru)

Показать ответ и решение

Числа A = 20101+ 13101  и B = 20103+ 13103  делятся на k.  Значит, числа 202A − B = (400− 169)⋅13101 = 231⋅13101  и      2         101
B − 13 A =231⋅20  также делятся на        101     101
k.(231⋅20  ,231⋅13  )=231= 7⋅33,  так что 231  делится на k.

С другой стороны,   n   n     n   n      n
20 + 13  =(20 − 13 )+ 2⋅13 .  Первое слагаемое делится на 20− 13= 7,  а второе — нет. Итак, k  является делителем числа 231  и не делится на 7;  значит, k  — делитель числа 33.

Ответ:

 k =1,3,11,33

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!