Выбор модуля и перебор случаев в уравнениях над Z
Ошибка.
Попробуйте повторить позже
Натуральное число имеет простой делитель
и другой делитель
связанный с
соотношением
.
Найти наименьшее возможное при этих условиях число
.
Источники:
Подсказка 1
Давайте раскроем скобки, приведём подобные и посмотрим на выражения слева и справа. Что можно сказать про p и q, исходя из того, что они делители числа n? Ведь слева у нас выражение без свободного коэффициента, зависящее от p и q, а справа n.
Подсказка 2
Верно, можно сказать, что 2p кратно q и q кратно p. Как можно сделать оценки на p и q?
Подсказка 3
Можно сказать, что q = kp. Но тогда 2p кратно kp. Равенства быть не может по условию, остаётся только вариант 2p^2 = n. Отсюда понятно, как искать min n: нужно найти min p при 2p^2 ≥ 2023.
Раскроем скобки:
Раз и
— это делители
то выражение в левой части должно делиться на
и
Следовательно, получаем
То есть тогда
откуда следует, что
или
Но так как
подходит только
Подставим:
Осталось перебрать чётные которые является удвоенным квадратом простого числа. Перебирая
получаем ответ
Проверка:
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!