Выбор модуля и перебор случаев в уравнениях над Z
Ошибка.
Попробуйте повторить позже
Натуральное число имеет простой делитель и другой делитель связанный с соотношением . Найти наименьшее возможное при этих условиях число .
Источники:
Подсказка 1
Давайте раскроем скобки, приведём подобные и посмотрим на выражения слева и справа. Что можно сказать про p и q, исходя из того, что они делители числа n? Ведь слева у нас выражение без свободного коэффициента, зависящее от p и q, а справа n.
Подсказка 2
Верно, можно сказать, что 2p кратно q и q кратно p. Как можно сделать оценки на p и q?
Подсказка 3
Можно сказать, что q = kp. Но тогда 2p кратно kp. Равенства быть не может по условию, остаётся только вариант 2p^2 = n. Отсюда понятно, как искать min n: нужно найти min p при 2p^2 ≥ 2023.
Раскроем скобки:
Раз и — это делители то выражение в левой части должно делиться на и Следовательно, получаем
То есть тогда откуда следует, что или Но так как подходит только Подставим:
Осталось перебрать чётные которые является удвоенным квадратом простого числа. Перебирая получаем ответ
Проверка:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!