Выбор модуля и перебор случаев в уравнениях над Z
Ошибка.
Попробуйте повторить позже
Докажите, что если при число целое, то оно точный квадрат.
Подсказка 1
Внимательно посмотрим на выражение. Если наше выражение целое при любых натуральных n, то оно четное. Обозначим его за 2k.
Подсказка 2
Что можно сказать про k после возведения в квадрат полученного уравнения на n и k?
Подсказка 3
Что k — чётное, то есть k = 2m. Получили, что произведение взаимно простых равно квадрату числа. А часто ли такое происходит?
Подсказка 4
Нужно разобрать 2 случая, один из которых не подойдет из-за остатков по модулю 3
Если число целое при , то оно чётное. Обозначим . Тогда . Возводя это равенство в квадрат, получаем
Число чётное: , где .
Тогда
Поскольку числа и взаимно просты, следует рассмотреть два случая:
1) , где ;
2) , где .
В первом случае имеем , то есть даёт остаток 2 при делении на 3 . Это невозможно, так как точный квадрат может давать при делении на 3 только остатки 0 или 1.
Во втором случае получаем - точный квадрат.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!